Los Sistemas Silvopastoriles, una alternativa para la crianza de bovinos jóvenes en condiciones de bajos insumos

AUTOR: M.Sc. Jesús Manuel Iglesias Gómez
CONSULTANTES: Dr. Leonel Simón Guelmes
Dr. Roberto García López

Tesis presentada en opción al grado científico de Doctor en Ciencias Veterinarias
Instituto de Ciencia Animal, La Habana, Cuba

2003
“... mientras el hombre se empeña en mantener los pastizales, la naturaleza lucha por el desarrollo de los bosques”. (Skerman y Riveros, 1992).

"... es un hecho poco alentador, para los expertos en prados de gramíneas, darse cuenta de que probablemente son más los animales que se alimentan de arbustos y árboles, o de asociaciones en las que las leñosas desempeñan un papel importante, que sobre verdaderos prados de gramíneas y leguminosas”. (Commonwealth Agricultural Bureau Publication, No.10. 1974).
Dedicatoria

✓ A mis compañeros de trabajo, que tanto me han estimulado y alentado para la realización de esta tesis.

✓ A mis familiares

✓ A mis amigos allegados

✓ A la dirección de la EEPF "Indio Hatuey" e investigadores menos jóvenes, los que me formaron como investigador

✓ A los que de una forma u otra pusieron su granito de arena en la consecución de las investigaciones y la redacción de los resultados
Agradecimientos

✓ A mis consultores y tutores, Dr. Leonel Simón Guelmes y Dr. Roberto García López, por sus valiosos aportes y consejos, que enriquecieron el valor científico de la tesis.

✓ A los investigadores y técnicos del Programa de Zootecnia. A los miembros de las Comisiones de Postgrado y Científica, así como del Comité Académico de la EEPF "Indio Hatuey", por sus sugerencias, críticas y recomendaciones al material de la tesis en sus fases iniciales.

✓ A los Consejos de Dirección de la EEPF “Indio Hatuey” y del Instituto de Ciencia Animal, por las facilidades brindadas para el desarrollo y culminación de nuestros estudios de doctorado.

✓ A los colegas del Departamento de Rumiantes y del Consejo Científico del Instituto de Ciencia Animal, por la ayuda técnico-material prestada y por su esmerado interés en el perfeccionamiento de nuestro trabajo de tesis.

✓ Al personal de la biblioteca de “Indio Hatuey” y del ICA, siempre dispuestos a satisfacer las exigencias y premuras de los usuarios.

✓ A los compañeros de las áreas de postgrado del ICA e “Indio Hatuey”, por su profesionalidad y ayuda.

✓ A los compañeros del Departamento de Matemática del ICA, siempre dispuestos a brindar ayuda y colaboración.

✓ A los compañeros del área de Servicios del ICA (motel y comedor), por hacernos nuestra estancia más agradable.

✓ A los técnicos Genaro Docazal, Anobel Aguilar, Pedro Duquesne, Fidel Ruz y Ernesto Fernández, coautores de los trabajos que integran esta tesis.

✓ A los investigadores que fungieron como oponentes en diferentes etapas del desarrollo de la tesis, por sus oportunas recomendaciones y sugerencias.
Índice

Introducción .. 1

Capítulo I. Revisión bibliográfica ... 4

1.1. Los Sistemas Silvopastoriles .. 4

1.1.1. Los bancos de proteína.. 6

1.1.2 Las Asociaciones de árboles con pastos en toda el área de potreros ... 7

1.2. Sistemas de pastoreo para la crianza de bovinos jóvenes en crecimiento .. 8

1.2.1. Ceba ... 8

1.2.2. Hembras en desarrollo ... 15

Capítulo II. Metodología y secuencia experimental ... 20

II.1 Ubicación del área experimental .. 20

II.2. Condiciones climáticas ... 20

II.3 Características del suelo .. 21

II.4 Mediciones realizadas en el pastizal ... 21

II.4.1 Disponibilidad de pastos ... 21

II.4.2 Disponibilidad de leucaena ... 21

II.4.3 Composición botánica ... 22

II.5 Análisis de laboratorio .. 22

II.6 Mediciones en los animales ... 22

II.7 Diseños experimentales y análisis estadísticos .. 22

II.8 Experimentos realizados .. 22

II.9 Procedimiento experimental .. 22

Capítulo III. Parte experimental .. 24

III.1 Utilización del Banco de proteína y la Asociación de árboles con pastos en toda el área, como alternativas para la ceba de toretes Cebú .. 24

III.1.1 Introducción.. 24

III.1.2. Tratamientos .. 24

III.1.3. Resultados .. 24

III.2. Utilización del Banco de proteína y/o la Asociación de árboles con pastos en toda el área, como alternativa para la cría de hembras mestizas de reemplazo hasta su incorporación a la reproducción. ... 27

III.2.1. Introducción ... 27

III.2.2. Tratamientos .. 27

III.2.3. Resultados .. 27

III.3. Asociación de árboles en toda el área de potreros para la ceba de toretes de diferentes genotipos raciales ... 29

III.3.1. Introducción ... 29

III.3.2. Tratamientos .. 30

III.3.3. Resultados .. 30
III.4. Evaluación del sistema Asociación de árboles en toda el área de potreros para la cría de hembras de reemplazo de diferentes genotipos. ... 32

III.4.1. Introducción ... 32
III.4.2. Tratamientos ... 33
III.4.3. Resultados .. 33

Capítulo IV. Discusión de los resultados obtenidos.. 35

IV.1 Producción animal .. 35
 IV.1.1 Ceba... 35
 IV.1.2 Hembras en desarrollo... 38
IV.2. Pastizales... 40

Capítulo V. Validación de los resultados en condiciones comerciales de la finca de la
Estación “Indio Hatuey”... 46

V.1. Crianza de hembras de reemplazo del genotipo (5/8 Holstein x 3/8 Cebú) en un sistema de Asociación de pastos con árboles en toda el área de potreros. ... 46
 V.1.1. Introducción ... 46
 V.1.2. Materiales y Métodos ... 46
 V.1.2.1. Condiciones climáticas .. 46
 V.1.2.2. Procedimiento .. 46
 V.1.3. Resultados y Discusión .. 47
V.2. Factibilidad económica de la cría en varios ciclos de producción.. 48

Conclusiones ... 51
Recomendaciones ... 52
Referencias.. 53
Anexos ... 65
Síntesis

Se describen los principales resultados obtenidos en investigaciones sobre sistemas de producción silvopastoriles de bajos insumos externos, con bovinos machos y hembras en crecimiento.

El suelo sobre el que se realizó el estudio fue de topografía plana, catalogado como Ferralítico Rojo Lixiviado y perteneciente a la Estación Experimental de Pastos y Forrajes “Indio Hatuey”, de la provincia de Matanzas, Cuba. El trabajo investigativo se dividió en cuatro experimentos y una etapa de validación de resultados: A) Ceba de toros Cebú comercial en un Sistema de Banco de Proteína y/o Sistema de Asociación en el 100 % del área, comparados con un control de gramíneas fertilizadas; B) Crianza de añojas mestizas (5/8 Holstein x 3/8 Cebú) de reemplazo en Banco de Proteína y/o Sistema Asociado; C) Ceba de toros de diferentes genotipos raciales (Cebú, F₁ Holstein x Cebú y 5/8 Holstein x 3/8 Cebú) en Sistema Asociado; D) Cría de hembras de diferentes genotipos raciales (5/8 Holstein x 3/8 Cebú y F₁ Holstein x Cebú) en Sistema Asociado; y E) Validación de este último sistema en condiciones comerciales de producción con hembras del tipo 5/8 Holstein x 3/8 Cebú. No se suplementó a los animales en ninguno de los sistemas estudiados y solo se aplicó fertilización nitrogenada, a razón de 80 kg de N/ha/año, en el sistema tradicional sin árboles y en el 75 % del área de los sistemas de Banco de Proteína. El pasto base de los sistemas fue *Panicum maximum*, aunque se mantenían los pastos naturales propios de la región y otras variedades cultivadas. El árbol utilizado fue la leguminosa *Leucaena leucocephala* cv. Cunningham, con una población de 555 plantas/ha en el sistema de Asociación y de 1 250 en el Banco de Proteína. La explotación siempre comenzó cuando estos alcanzaron los 2 m de altura como promedio. En todos los casos, para el análisis estadístico se utilizaron diseños experimentales totalmente aleatorizados, con análisis de varianza de clasificación simple, mientras que las medias se compararon según Duncan (1955).

El sistema de Asociación en el 100 % del área produjo ganancias individuales acumuladas superiores a los 620 g diarios en los toros Cebú y de más de 490 g en los de genotipo lechero, con pesos finales por encima de los 400 kg en los primeros, y entre 376 y 357 kg para los genotipos F₁ y 5/8 Holstein x 3/8 Cebú, respectivamente. Los otros sistemas evaluados también obtuvieron ganancias individuales satisfactorias (más de 530 g/animal/día), aunque en estos se usaron insumos externos, por concepto del uso de los fertilizantes en las áreas de gramíneas.

En el caso de las hembras de reemplazo, las ganancias diarias acumuladas de los animales que pastorearon la Asociación (524 g para los F₁ y entre 493-441 g para las hembras 5/8 Holstein x 3/8 Cebú), fueron satisfactorias para este tipo de sistema de bajos insumos externos, así como los pesos de incorporación a la reproducción que variaron entre los 280 y 310 kg. Las ganancias del sistema de Banco de Proteína también fueron próximas a los 455 g/animal/día, con un peso de incorporación superior a los 290 kg. La edad de incorporación a la reproducción fue alta en todos los sistemas estudiados, motivado por el bajo peso/edad que presentaron los animales experimentales antes del comienzo de las investigaciones.

En todos los experimentos se evidenció una alta producción de biomasa, con rendimientos en la época poco lluviosa que fluctuaron entre 7,37 y 14,58 kg de MS/100 kg de PV/día.

La oferta diaria de leucaena en los Sistemas Silvopastoriles estudiados fue muy variable, en dependencia del tamaño y peso de los animales y el manejo a que fueron sometidos los árboles (ramoneo o poda). Así, se encontraron valores entre 0,115 y 2,40 kg de MS/100 kg de PV/día en la época poco lluviosa y de 0,284-2,50 kg para la lluviosa. La calidad proteica de la biomasa ofertada fue alta, con contenidos de proteína bruta en la leucaena y los pastos acompañantes de más de 20 y 9 %, respectivamente.

Se concluye que es factible la ceba de machos y la cría de hembras de reemplazo con el uso de Sistemas Silvopastoriles de bajos insumos, ya que no ocurren pérdidas de peso durante el año y se obtuvieron ganancias promedio entre 400-600 g/animal/día. Se recomienda su uso en condiciones de producción.
Introducción

A partir del triunfo de la Revolución Cubana la ganadería vacuna experimentó grandes transformaciones, lo que incluyó cambios en su infraestructura general y en los métodos de manejo zootécnico y alimentación. Esta se basó durante muchos años en la utilización de altas cantidades de insumos externos (concentrados para la alimentación animal, fertilizantes, combustible, alimentos conservados, etc.), lo que propició contar con una sólida base alimentaria en la mayoría de las empresas ganaderas, y manejar y utilizar los alimentos y los animales con un concepto similar al empleado en los países desarrollados.

En función de esta política se llevó a cabo un programa de cruzamiento masivo del ganado Bos indicus con la raza Holstein introducida en la década de los años sesenta y sus retrocruces, como mejoradores de la producción de leche, lo que motivó la existencia actual de una masa vacuna en la categoría de desarrollo, tanto para la ceba como para el reemplazo, predominantemente mestiza y con una amplia diversidad de genotipos.

En este contexto, una gran parte de la producción de carne vacuna se realizaba en cebaderos, con tecnologías de estabulación total o parcial, donde la miel de caña en combinación con la urea en diferentes proporciones, los suplementos proteicos y el forraje o pastoreo restringido de gramíneas constituían la dieta principal de los animales (Delgado, García Trujillo, Molina, Elías, Reyes, Sardinas y Hernández, 1994).

Por otra parte, se garantizaba un adecuado crecimiento de los bovinos en desarrollo, al utilizar la cría artificial con leche materna o sus sustitutos en las primeras fases de vida del ternero, y la suplementación adecuada con concentrados y henos de calidad en los sistemas de pastoreo posteriores (González, Elías, y Urquiza, 1990; Plaza y Fernández, 1997).

Sin embargo, en la actualidad las empresas ganaderas del país no escapan a las consecuencias de la crisis económica que afecta al país, a raíz de la caída del campo socialista a inicios de los 90 y la prevalencia del Período Especial. Baste decir que, antes de 1990, se recibían anualmente más de 400 mil t entre fertilizantes nitrogenados y compuestos, mientras que ahora las cantidades son ínfimas (MINAGRI, 2000). De las 700 000 t de piensos y harinas proteicas, solo se reciben actualmente 68 800 y 34 100 t, respectivamente (preferentemente para animales monogástricos), además de la escasez de las mieles de caña, de la cual se destinaban alrededor de 1 000 000 de t anualmente como suplemento energético y según se reporta, en el 2000 (Anon, 2000a) solo se consumieron 228 800 t.

Esto se manifiesta en la producción de carne bovina actual, la cual se basa, principalmente, en sistemas de pastoreo sobre pastos con cobertura de gramíneas nativas y/o naturalizadas, donde se ceban tanto los animales de cría (ganado Cebú) como los machos mestizos provenientes de los rebaños lecheros. En estos sistemas de producción la disponibilidad de pastos y forrajes se reduce en más de un 50% durante la época poco lluviosa; ello impide a los animales cubrir los requerimientos nutricionales para una adecuada producción cárnica y en muchas ocasiones incluso los de mantenimiento, lo que provoca que no rebasen los 250 kg de peso vivo al sacrificio, con más de 24 meses de edad (Castillo, 1996).

También influye en la crianza de las hembras, las cuales se subalimentan y son víctimas de un mal manejo zootécnico. Comúnmente, estas pastan en áreas de mala calidad y, además, reciben una pobre suplementación en canoa. En este sentido, Fundora, Stuart y Sierra (1999) describen sistemas de crianza de estabulación en lote seco, donde la base de la ración lo constituyen los residuos de centros de limpieza (paja de caña) y las ganancias no rebasan los 210 g diarios/novilla, lo que está asociado a un bajo consumo de estos.

Ello determina una edad promedio de incorporación de 27,8 meses e intervalos incorporación-primer servicio e incorporación-gestación de 125 y 131 días, respectivamente, con una edad promedio de 44,2 meses al primer parto, por lo que en general, solo por estos conceptos, se están perdiendo 2 terneros potenciales y más de un ciclo lactacional en su vida útil (Delegación Nacional de Genética, 2000).

En este contexto, la renovación de los pastizales, unido a la incorporación estratégica de plantas arbóreas y arbustivas en las áreas de pastoreo, se presenta como una alternativa tecnológica que contribuiría a mejorar la producción de estas categorías y genotipos bovinos, disminuyendo a su vez el impacto en los ecosistemas donde se desarrollan. Según Preston (1995), esto podría constituir una solución económicamente viable, que no produce daños ambientales y es socialmente aceptada, cuyos beneficios a corto plazo se observarían en un incremento sostenido de la producción animal.

Según Hernández y Simón (1994), ya desde 1974 el científico colombiano Silvio Yepes, basado en sus estudios realizados en Indio Hatuey, Cuba, se adelantaba y describía las bondades para la ganadería cubana de lo que él llamaba “…una vegetación clímax de los bosques semicaducifolios que botan la hoja en el primer trimestre de invierno y los renuevan en el segundo trimestre (marzo, abril y mayo), cuando aumenta el calor y la duración del día, aunque las lluvias no han llegado. Las plantas herbáceas, mientras tanto, se han secado. Los campesinos dicen que el ganado se muere en el potrero y se salva en la manigua comiendo bejucos, leguminosas volubles y arbustos con sus vainas de invierno y, en general, un centenar de especies de ramoneo como lo hemos comprobado en una encuesta realizada con 500 guardabosques del INDAF...”
A partir de estos estudios y con el conocimiento y descripción de 42 "ramones", este autor propuso la introducción de arbustos en los sistemas ganaderos y planteó que un ecosistema de sabana con arbustos es más propio y productivo que una pradera limpia de tipo no tropical.

La combinación de gramíneas, leguminosas herbáceas y árboles y arbustos en las áreas de pastoreo permite aumentar la oferta de forraje, en particular en la época de pocas lluvias, y mejorar la calidad de la dieta a lo largo de todo el año. La producción promedio de forraje de cultivos de arbóreas (Ej: Leucaena leucocephala) es mayor o igual a 8-16 t de materia seca por hectárea (Clavero y Razz, 1997), lo cual es superior a la producción de especies mejoradas de gramíneas, y con niveles de proteína dos o tres veces superiores a los encontrados en estas. Así mismo, la incorporación de leñosas perennes en las praderas influye positivamente en la diversificación de la composición de la cobertura vegetal y estimula la conservación y el reciclaje de nutrientes (Pezo, 1992; Uribe y Londoño, 1996).

Actualmente, hay un gran auge en nuestro país para un cambio importante en la visión de los investigadores, profesionales, técnicos y productores respecto al papel de las especies arbóreas, y en especial del árbol leguminoso multipropósito L. leucocephala, en la producción de rumiantes. Existen ya algunas experiencias orientadas al diseño de alternativas agrosilvopastoriles que permiten intensificar las interacciones entre este árbol y los sistemas ganaderos basados en rumiantes (Simón, 1996; Iglesias, 1996; Hernández, Carbello y Reyes, 1998; Ruiz, Febles, Jordán, Castillo y Galindo, 2000; Simón y Francisco, 2000). Su objetivo principal es desarrollar alternativas tecnológicas para lograr la integración árbol-pasto-animal en los sistemas de producción, orientadas a mejorar el nivel alimenticio y productivo de los animales, la utilización racional de los recursos y la evaluación del impacto económico, social y ambiental de las diferentes alternativas.

En el esfuerzo por desarrollar sistemas de producción, adecuados a la situación actual de bajos insumos que atraviesa la ganadería, y en aras de enriquecer la documentación e información sobre estos sistemas silvopastoriles de bajos insumos externos, es que se realizan los estudios de esta tesis de doctorado, la cual se basó en la siguiente hipótesis de trabajo:

En la actualidad, los sistemas de producción comerciales para la cría de bovinos en desarrollo, basados en el pastoreo de gramíneas, son ineficientes desde el punto de vista productivo. La introducción de árboles de ramoneo, como L. leucocephala, en dichos sistemas, posibilitaría aumentos en la disponibilidad de la biomasa comestible, así como en la calidad del material ofertado, lo que propiciaría mayores ganancias y pesos vivos finales para los objetivos que se persiguen en la ceba de machos o para la incorporación de las hembras a la reproducción.

Teniendo en cuenta lo planteado anteriormente, el objetivo general de la tesis fue:

Demostrar la factibilidad del uso de Sistemas Silvopastoriles de bajos insumos externos, para el sostenimiento de la producción pecuaria en la crianza de bovinos jóvenes de diferentes categorías y genotipos, así como describir los indicadores de rendimiento y calidad de los pastos y los árboles leguminosos utilizados.

Como el estudio abarcará diferentes Sistemas Silvopastoriles y el uso de diferentes categorías y genotipos raciales en crecimiento, se trazaron los siguientes objetivos específicos:

1. **Desarrollar la ceba de machos Cebú y la crianza de añojas mestizas, en los Sistemas Silvopastoriles de bajos insumos externos Banco de Proteína y Asociación de árboles en toda el área, con el objetivo de determinar el sistema más ventajoso para la producción de carne y la obtención de novillas de reemplazo.**

2. **Determinar las posibilidades del Sistema Silvopastoril seleccionado, para los propósitos productivos antes mencionados, usando animales de diferentes genotipos comerciales.**

3. **Extender, en condiciones similares a la producción comercial, los resultados productivos y económicos alcanzados con las añojas de reemplazo en este sistema.**

La originalidad y la novedad científica de las investigaciones realizadas se concretan en lo siguiente:

- **Por primera vez se aborda, en un mismo estudio sobre sistemas de producción en pastoreo, tanto lo relacionado con el crecimiento-ceba, como con la crianza de añojas para el reemplazo en un contexto de manejo silvopastoral.**
En los sistemas de pastoreo estudiados no se utiliza la suplementación energético-proteica tradicional, por lo que los árboles de leucaena desempeñan el papel de insumo interno suplementario, y constituyen, junto a los pastos y las sales minerales, la única fuente de alimentación de los animales.

Se informan resultados parciales, en la ceba de toros y en la cría de añojas de reemplazo, acerca del comportamiento productivo de diferentes genotipos en pastoreo de asociaciones de gramineas y leucaena.

Se informa la viabilidad económica para la cría de añojas de reemplazo hasta su incorporación a la reproducción, en condiciones de producción, con el uso de la Asociación gramineas-Leucaena.
Capítulo I. Revisión bibliográfica

1.1. Los Sistemas Silvopastoriles

Los Sistemas Silvopastoriles se presentan como una de las principales modalidades de los Sistemas Agroforestales, y por sus resultados y su proyección podrían significar un importante paso en la estrategia de lograr la armonía entre la conservación ambiental y el desarrollo de la actividad ganadera, ya que proporcionan una mayor utilidad de los recursos locales, haciendo menos dependiente y más económica la producción pecuaria, y al mismo tiempo, resultan congruentes con el uso racional del ecosistema (Simón, Hernández y Ojeda, 1998; Simón, 2000).

Pezo e Ibrahim (1998) y Ruiz y Febles (1999) plantean que un sistema silvopastoril es cualquier situación donde se desarrollen conjuntamente árboles o arbustos con pasturas, en un manejo integral, interactuando con los animales, cuyo objetivo principal sea el de incrementar la productividad y el beneficio neto por hectárea a largo plazo.

Acorde con lo reportado por Giraldo (1995), en los sistemas silvopastoriles el componente plantas herbáceas se refiere básicamente a las gramíneas y las leguminosas, especies que conforman la mayor parte del alimento de los ruminantes, de donde obtienen la mayor parte de sus requerimientos; el componente animal pertenece al grupo alimenticio de los pastoreadores. El subsuelo comprende los estratos de suelo no explotados por el pasto, pero sí potencialmente alcanzables por los árboles. Otro componente del sistema son los árboles, que unidos a las herbáceas conforman los llamados productores del sistema.

A esto debe añadirse que existen un sin número de interacciones en estos sistemas, donde los árboles mejoran el suelo y dan sombra y follaje de alta calidad al ganado. Además, producen semillas, frutos y madera. A su vez el ganado aporta nutrientes al suelo mediante sus eyeciones y propicia los productos necesarios para el hombre, como leche y carne. En estos sistemas donde se emplean especies arbóreas se incrementa la disponibilidad de nutrientes para el pasto y aumenta la biomasa comestible, en comparación con aquellos sistemas de gramíneas mejoradas sin fertilizar.

Los propósitos y objetivos que se persiguen con la introducción de los sistemas silvopastoriles en la ganadería (Hernández e Iglesias, 2000) son, entre otros:

- Lograr en la ceb a ganancias entre 500 y 600 g/animal/día, como mínimo, y producciones de alrededor de 800 kg de carne en pie por hectárea anualmente.
- Lograr potencialidades mínimas de 10 kg/vaca/día o 20 kg de leche/ha/día sin usar suplementos energético-proteicos.
- Obtener ganancias entre 400-500 g/animal/día en hembras en crecimiento para el reemplazo, lo que permite un peso de incorporación a la reproducción de 290-300 kg, con edades que fluctúan entre los 20-24 meses.
- Alcanzar estos resultados con una aceptable rentabilidad, lograda en función del manejo y la explotación racional de los pastos, con un mínimo de gastos en insumos externos.
- Lograr la autosostenibilidad del sistema, propiciando la máxima recirculación de nutrientes y la protección y mantenimiento del medio ambiente.

Según Ávila (1995) los sistemas silvopastoriles ofrecen, por el momento, la opción más viable para que la producción animal contribuya efectivamente al desarrollo socioeconómico y equitativo, acorde con las bondades y requisitos naturales de la región. Los estudios realizados en sistemas sostenibles en el trópico recomiendan el silvopastoreo como una alternativa posible para los productores que dispongan de pocos recursos (Gutteridge y Shelton, 1994; Pezo et al., 1998) y, a su vez, citan el papel desempeñado por L. leucocephala, posiblemente la planta arbórea más utilizada y estudiada en los últimos 30 años en los países del área tropical.

Esta fue reconocida, a partir de los años 70 e incluso en la década de los 80 y 90, como "el árbol milagroso", debido a los éxitos que ha alcanzado como árbol forrajero de alto valor nutritivo, por su longevidad y por sus otros múltiples usos. Una detallada revisión bibliográfica acerca de esta leguminosa multipropósito se puede encontrar en los trabajos de Iglesias (1996), donde se utilizó en sistemas de ceba, con resultados satisfactorios desde el punto de vista de la producción animal y su persistencia al pastoreo.
En las condiciones actuales de desarrollo de los países tropicales, como es el caso de Cuba, pensamos que se impone hacer una valoración objetiva acerca de la utilización de estos sistemas, como una opción más en el empeño por impulsar la producción de carne y leche en el país, ya que los componentes arbóreos cumplen un sin número de objetivos, tales como: producción de follaje y otros productos alimenticios y medicinales, producción de madera y postes, mejoramiento del microclima y el suelo, aporte de materia orgánica, fijación de nitrógeno y captación de dióxido de carbono. Por otra parte, su establecimiento y posterior explotación no requieren de altos insumos, ya que el uso de la maquinaria es mínimo, ni tampoco se precisa de altas dosis de fertilizantes ni pesticidas para mantener el sistema de producción de forma sostenible.

Existen disímiles clasificaciones y enfoques acerca de los sistemas silvopastoriles, a continuación se citarán las más populares y extendidas.

Desde el punto de vista de las prácticas que lo integran y por sus funciones, Nair (citado por Kass, 1992) concluye que los sistemas silvopastoriles se clasifican de la siguiente forma:

1. Los bancos de proteína.
2. Asociaciones de árboles con pastos.
3. Pastoreo en plantaciones forestales y frutales.

Ibrahim, Camero, Pezo y Esquivel (1998) clasifican los sistemas silvopastoriles de la siguiente forma:

1. Cercas vivas.
2. Bancos de proteína o energía.
3. Leñosas perennes como barriceras vivas en áreas de pendiente, como parte de un sistema de “corte y acarreo” para la suplementación de ganado estabulado.
4. Sistemas de cultivo en callejones con leguminosas arbóreas o arbustivas, intercaladas con forrajeras herbáceas.
5. Pastoreo en plantaciones de árboles maderables o frutales.
6. Cortinas rompevientos en fincas ganaderas.
7. Pastoreo en matorrales y bosques naturales.
8. Árboles maderables o frutales dispersos en potreros.

De igual forma, Sánchez (1999) propone clasificarlos como sigue:

1. Pastoreo en bosques naturales.
2. Pastoreo en plantaciones forestales para madera.
3. Pastoreo en huertos.
4. Sistemas agroforestales especializados para la ganadería intensiva.
5. Praderas con árboles o arbustos forrajeros en las praderas.
6. Sistemas mixtos con árboles forrajeros o multipropósito para corte.

Por último, Murgueitio, Rosales y Gómez (2001) diferencian dos grupos de sistemas agroforestales pecuarios:

1. Sistemas de corte, recolección y acarreo.
 - Banco de proteína
 - Banco productor
 - Árboles y palmas productoras de frutos alimenticios.
 - Bancos de energía con árboles.
 - Banco múltiple, policultivo o bosque de proteína.
 - Sistemas multietrato.

2. Sistemas silvopastoriles.
 - Silvopastoreo con ganadería extensiva.
 - Plantaciones forestales con pastoreo de ganado.
 - Cercos vivos.
 - Barreras contra el viento.
 - Línderos arborizados.
 - Corredores biológicos.
 - Árboles aislados para sombrío.
 - Silvopastoriles con manejo de la sucesión vegetal.
 - Silvopastoriles con alta densidad de arbóreas.
Al hacer un análisis de las diferentes clasificaciones citadas se denota que entre los diversos tipos que conforman los sistemas silvopastoriles, los bancos de proteína, las asociaciones de árboles y gramíneas en toda el área y los cercos vivos, parecen ser los más extendidos y utilizados en el trópico. En el caso de Cuba, los dos primeros han aportado los resultados más importantes en las investigaciones, en cuanto a producción de carne y leche, por lo que se perfilan en la actualidad como sistemas que se pueden generalizar, integrados al conjunto de propósitos productivos de la ganadería vacuna en el país.

1.1.1. Los bancos de proteína

Según Hernández y Simón (1993) esta tecnología consiste en la siembra de árboles, arbustos y herbáceas rastreras, con un alto contenido de proteína (generalmente leguminosas), a altas densidades y en una determinada porción del terreno de pastoreo.

Camero e Ibrahim (1996) señalan que un banco de proteína no es más que la siembra de árboles o arbustos forrajeros con un alto contenido de proteína en densidades altas (de hasta 20 000 plantas por hectárea), donde el forraje puede ser cosechado por el hombre para atender a los animales, en un sistema de corte y acarreo, o ser pastoreados directamente.

Según Rincón (1995) las especies que integran un banco de proteína deben satisfacer ciertos requisitos, entre los que se encuentran su persistencia a diferentes frecuencias de defoliación, su aceptabilidad por el ganado, ser de mediana o alta capacidad de rebrote, con un alto contenido de proteína y un bajo o nulo contenido de metabolitos secundarios.

En el banco de proteína se emplean especies herbáceas y volubles, en asociaciones múltiples con el pasto natural o cultivado, que posteriormente puede ser perfeccionado y potenciado al introducir las arbustivas al sistema (Hernández, Hernández, Hernández, Carballo, Carnet, Mendoza, Mendoza y Rodríguez, 1992).

Estos conceptos coinciden con lo planteados por Ruiz, Febles, Jordán, Castillo, Zarragoitia, Díaz, Crespo y Ramírez (1991), aunque estos autores los subdividen en bancos de acceso libre o limitado de los animales. La diferencia entre estas formas de utilización consiste en que en el primer caso no existen cercas divisorias entre las áreas de gramíneas y las de leguminosas, mientras que en el otro sí.

En Costa Rica, el concepto de banco de proteína es sustituido por el de banco de forraje (Martínez, 1989), al igual que en Chile (Altieri, 1990). Estos bancos forrajeros son rodales plantados a densidades altas (5 000-40 000 árboles/ha ó más), donde las especies que se utilizan son de reconocido valor forrajero, con una alta producción de biomasa, proteína cruda total y proteína cruda comestible. En dichos sistemas es conveniente que las especies utilizadas sean fijadoras de nitrógeno y/o permitan el cultivo intercalado de otros forrajes como pastos de corte (Pezo et al., 1998). Murgueitio et al. (2001) plantean que la diversidad de especies y la cosecha frecuente de los bancos permiten que las plagas potenciales y las enfermedades tengan un reducido impacto económico, debido a las mayores barreras de dispersión y los mayores controles naturales.

Otro factor que se debe considerar es el intervalo entre cortes. Según Shelton y Brewbaker (1994), en sitios muy productivos los intervalos entre cortes pueden ser entre 6 y 8 semanas, y de 12 semanas en las zonas menos productivas. En sentido general, los intervalos más largos entre defoliaciones incrementan el rendimiento total; no obstante, la alta proporción de material leñoso o no comestible también puede conducir a una disminución de la calidad del forraje.

Las interacciones que se producen debido a las prácticas de corte y las densidades de plantas en árboles y arbustos forrajeros, hacen muy difícil discernir con exactitud sus efectos beneficiosos o perjudiciales; sin embargo, aparentemente, para comenzar la explotación de estas plantas es preciso que haya transcurrido al menos un período de establecimiento de 6-12 meses, para permitir la formación de un sistema radicular fuerte y que el diámetro del tallo basal sea, al menos, de 10-15 mm antes de imponerle un régimen de corte. Por otra parte, pensamos que en las condiciones actuales de la ganadería cubana, donde la maquinaria agrícola está muy deprimida y deteriorada, estos sistemas de banco de forraje para corte y acarreo son más apropiados para granjas pequeñas o campesinos individuales, donde el número de animales es reducido, se hace un uso intensivo de la tierra y el sistema de alimentación es en corrales, por lo que no hay una dependencia absoluta de la maquinaria, la cual se sustituye por el corte manual de los forrajes. Esto, a su vez, propicia el uso de la materia orgánica que provenga de las heces de los animales estabulados, la cual se composta en aboneras o es procesada por las lombrices de tierra, para ser utilizada luego en las mismas áreas forrajeras en forma de fertilizantes.

Ruiz et al. (1990) plantean que el manejo de los bancos de proteína para pastoreo es sencillo, y admite que un montero experimentado y cuidadoso pueda realizarlo eficientemente. El área de las leguminosas debe ser rotada, de forma tal que garantice períodos de reposo no menores de cinco semanas, que pueden alargarse en función de propiciar un rebrote fuerte y abundante de las leguminosas.
A estas se les puede dar un manejo igual que a la gramínea cuando el banco se ofrece en libre acceso, o
manejarlas diferencialmente, controlando el acceso mediante una cerca que separe el banco del resto del
área, en dependencia de sus características específicas.

El libre acceso de los animales es recomendable en los casos en que el banco de proteína complemente un
pastizal de pasto natural, que se puede explotar en un solo cuartón mediante el pastoreo continuo abriendo las
puertas de los cuartones de leguminosas que tengan un rebrote óptimo y cerrándolos cuando los animales lo
hayan consumido convenientemente.

Cuando el banco de proteína complementa un pastizal de gramíneas cultivadas, fertilizadas o no, es
recomendable el manejo diferido, que consiste en dar acceso a este sólo en el tiempo de menor disponibilidad
del pico de producción de la gramínea (Hernández et al., 1992).

La proporción que deben tener los bancos en la pradera puede ser de 50:50, 70:25 ó 70:30 % gramíneas:
1.1.2 Las Asociaciones de árboles con pastos en toda el área de potreros
bano de proteína, lo que está en dependencia del sistema de manejo escogido por el productor. Cuando se
utiliza el manejo diferido (no se pase el banco en la época lluviosa) y en el área de gramíneas predominan los
pastos naturales, se obtienen mejores resultados con el 25-30 % ocupado por las leguminosas; sin embargo, si
predominan las gramíneas cultivadas o son sistemas con libre acceso, mientras mayor sea la proporción de
leguminosas mejores serán los resultados.

En sentido general, se aprecia que los bancos de proteína surgen como necesidad de ofrecer un alimento de
alto valor nutritivo suplementario a los animales en pastoreo, aunque se necesita de un manejo diferenciado
para las leguminosas, el cual asegura su persistencia a más largo plazo y permite manejar intensivamente la
gramínea. El área dedicada a los bancos es muy disímil, variando desde un 25 % hasta un 50, así como su
manejo, lo que está en dependencia del propósito productivo y las especies utilizadas.

En Cuba, con el empleo de los bancos de proteína de leucaena en pastoreo directo de los animales, se han
alcanzado producciones de leche de 9 a 10 L/vaca/día cuando se fertiliza el área de la gramínea (Milera,
Iglesias, Remy y Cabrera, 1994). Resultados similares fueron encontrados por Jones (1994); Soler, Chacón,
Arrijoa, Valle y Rodríguez (1996); Lamela, Valdés y Fung (1996a); Lamela, Valdés y Fung (1996b).

En estas condiciones de explotación y sin el uso de insumos externos, se pueden esperar ganancias de
peso vivo de 500 g/anima/día o más, con pesos finales de 400 kg a los 24-26 meses de edad y producciones de
400-800 kg de carne en pie/ha (Hernández et al., 1992; Febles, Ruiz y Simón, 1996; Castillo, Ruiz, Puentes y
Lucas; Ruiz et al., 1999).

Una preocupación para los ganaderos que explotan bancos de proteína de leucaena en pastoreo, es la
altura que alcanza la especie arbórea. Según, Ruiz, Febles, Cobarrubias, Díaz y Bernal (1988) en muchas
ocasiones, a partir de los 24 meses de haberse iniciado la explotación con animales, hay entre 1-5 % de plantas
que alcanzan alturas mayores que 2 m. Esto representa una pérdida grande de follaje, que no está al alcance
del ramoneo de los animales. De ello se desprende que la poda de esta planta es una labor necesaria para la
conformación de una tecnología integral acerca del manejo y la explotación de los bancos proteicos.

Por la experiencia acumulada en el manejo de sistemas silvopastoriles basados en el uso de la leucaena,
pensamos que la poda de los árboles puede realizarse tanto a finales de la época lluviosa (octubre-noviembre),
cuando en los meses de menor disponibilidad de alimentos (enero-abril). En el primer caso se tiene la ventaja de
que, en plena época poco lluviosa, los árboles tendrán un porte relativamente bajo para ser ramoneados por los
animales, además de un buen rebrote acumulado durante más de 90 días de reposo, aunque existe la
desventaja de que el follaje podado no tendrá mucha utilización por los animales, debido a la alta disponibilidad
de gramíneas aún prevaleciente durante ese período de cortes. En la segunda opción se mantendrá el porte
alto de los árboles durante los meses más calurosos, con su efecto positivo de sombreado sobre los
animales y los pastos, y luego, en la época de pocas lluvias, los animales tendrán acceso al follaje de las ramas
y troncos podados, en los meses que determine el productor como más críticos en cuanto a la disponibilidad y
la oferta de alimentos. Esta poda en plena sequía propiciará luego un rebrote vigoroso que se alargará hasta
inicios de la época lluviosa.

1.1.2 Las Asociaciones de árboles con pastos en toda el área de potreros

A la inclusión de árboles en el 100 % del área, que además de la sombra, follaje y frutos que brindan a los
animales, favorecen el reciclaje de nutrientes, mejorando la estructura y el balance hídrico del suelo, se le
conoce como asociación de árboles en potreros (Camer, 1996).

En estos sistemas el objetivo principal es la ganadería, aunque de forma secundaria se puede lograr la
producción de madera, leña o frutas. Los animales se alimentan con hierbas, hojas, frutos, cortezas y otras
partes de los árboles y, además, consumen el pasto que crece bajo los árboles, tanto de forma natural como cultivado por el hombre (Iglesias, 1998).

La Asociación está constituida por una combinación de leguminosas y gramíneas que conforman una multisociación o comunidad vegetal, en que cada uno de los componentes del pastizal desempeña un papel determinado en la alimentación de los animales y en el sistema. Las gramíneas aportan el alimento voluminoso; mientras que las leguminosas, con sus altos contenidos proteicos, sirven como suplemento o complemento de la ración de pastoreo.

En la Asociación se desarrollan estratos vegetativos verticales: uno constituido por las leguminosas herbáceas y las gramíneas, que crecen más próximas al suelo; el otro formado por los rebrotes provenientes de la poda, y un tercer estrato aéreo formado por la copa de los árboles, que además de brindar sombra, representa una reserva de follaje, la cual puede ser utilizada estratégicamente mediante la poda escalonada en los meses de mayor escasez de alimentos. (Hernández, Carballo, Reyes y Mendoza, 1998).

En estos sistemas los insumos provenientes del exterior son mínimos, pues la fertilización del suelo proviene de la fijación del nitrógeno realizado por las leguminosas, de las deyecciones de los animales y de la hojarasca natural, unido a una fuerte recirculación de nutrientes.

El manejo propuesto para las pasturas asociadas con árboles está fundamentado en el necesario reposo que deben tener las leguminosas, tanto arbóreas como herbáceas. Es a partir de este indicador que se diseña el sistema de manejo, o sea, a partir del comportamiento de las leguminosas y no de las gramíneas, como se hacía habitualmente en los sistemas tradicionales.

Mientras esto sucede con las leguminosas, las gramíneas, por el efecto de la sombra y otros factores en el silvopastoreo, maduran muy lentamente, manteniéndose su frescor y color verde con poca emisión de tallos florales.

De acuerdo con las investigaciones realizadas y los resultados preliminares en sistemas de producción de leche a escala comercial, Simón, Lamela, Esperance y Reyes (1998) plantean que a los árboles (leucaena y albizia) en la asociación debe garantizárseles un descanso de alrededor de 70 días en la estación poco lluviosa (diciembre-marzo) y de unos 35 días durante las lluvias (junio-noviembre). Partiendo de esta premisa y de la ocupación adecuada que debe tener cada cuartón, el diseño del pastoreo debe contar con suficiente cantidad de cuartones o potreros, cifras que pudieran estar entre los 24 y 69 cuartones, divididos estos por cercado eléctrico, lo que abarata los costos de inversión y mantenimiento del cercado.

En Cuba, el desarrollo de los sistemas de asociación de árboles con pastos en toda el área no ha sido suficiente, dándosele prioridad a los sistemas de banco de proteína, los cuales son más sencillos de establecer y requieren de una menor inversión en cercados, semilla y preparación de tierra. Sin embargo, los trabajos de Castillo, Ruiz, Febles, Crespo, Galindo, Chongo y Hernández (1998) y Simón, Hernández y Duquesne (1995) con el uso de *L. leucocephala* y *Albizia lebbeck*, respectivamente, y los realizados por Hernández et al. (1998) y Hernández (2000) con asociaciones múltiples de gramíneas y leguminosas y el uso de diferentes variedades de árboles para la ceba (bahiá, albizia y leucaena) respectivamente, han demostrado la eficiencia de estos sistemas en lo que respecta a la producción de carne y leche.

1.2. Sistemas de pastoreo para la crianza de bovinos jóvenes en crecimiento

1.2.1. Ceba

Valdés y Senra (1999) plantean que en Cuba se han manifestado cuatro subsistemas de la ceba en pastoreo sin la inclusión de las leguminosas (Cuadro 1.2.1.1).

<table>
<thead>
<tr>
<th>Sistema Pastoreo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pastoreo restringido más miel urea a voluntad</td>
<td>Acceso de 4 horas al día al pasto, suplemento de proteína natural y sales minerales. Pastoreos divididos en 4 cuartones con acceso a una corralera rústica.</td>
</tr>
<tr>
<td>Pastoreo restringido más consumo limitado de miel urea al 3 %</td>
<td>Suministro de 3 y 3,5 kg de miel urea/animal/día en las épocas lluviosas y poco lluviosa, respectivamente. Suplementación de proteína natural. Fundamentalmente tecnología para el ganado lechero. Instalaciones similares al anterior.</td>
</tr>
<tr>
<td>Pastoreo libre</td>
<td>Sin restricción de acceso al pasto. Características e instalaciones similares a los anteriores.</td>
</tr>
<tr>
<td>Pastoreo Racional Voisin</td>
<td>Sin restricción de acceso al pasto. Elevado número de cuartones y alta carga instantánea e intensidad de pastoreo. Suplementación variada.</td>
</tr>
</tbody>
</table>

8
No obstante, los estudios realizados para evaluar el comportamiento de diferentes cultivos de gramíneas en pastoreo para la ceba comenzaron en 1980, utilizando sistemas de secano sin suplementación (Valdés, Montoya, Chao y Duquesne) y con los pastos pangola (*Digitaria decumbens* cv. PA-32), bermuda (*Cynodon dactylon* cv. Coastcross-1) y guinea (*Panicum maximum* cv. Común), la utilización de altas cargas (3; 5 y 7,5 animales/ha) y niveles de 150 kg de N/ha/año.

De estos trabajos se infiere que las ganancias individuales de los animales mestizos siempre fueron bajas, especialmente en las cargas de 5 y 7 animales/ha, donde no rebasaron los 200 g/día, y solamente se logró el peso adecuado para el sacrificio (360 kg) con la carga de 3 animales/ha, en correspondencia con la edad (25 meses); mientras que en las cargas 5 y 7,5 los animales a esa edad solo tenían 250 kg de PV.

Teniendo en cuenta los resultados adversos en cuanto a las ganancias de peso vivo, se continuaron las investigaciones en estas mismas especies y animales mestizos Holstein x Cebú, pero con cargas de 2; 3,3 y 5 animales/ha (Alfonso, Valdés y Duquesne, 1984). Los animales que pastaron en el pasto pangola lograron las mejores ganancias (P<0,05) para las tres cargas (548, 415 y 339 g/animal/día), y la carga de 2 animales/ha fue la mejor variante de explotación en cuanto a las ganancias individuales se refiere.

Los estudios de evaluación de especies continuaron con las gramíneas *Andropogon gayanus* cv. CIAT-621 y *Brachiaria decumbens* cv. Basilisk, utilizando como testigo la pangola PA-32, especie que se destacó en las investigaciones anteriores (Alfonso, Hernández y Batista, 1988a).

Los pastos se sometieron a las cargas de 3 y 4,5 animales/ha y a un nivel de fertilización de 100 kg de N/ha/año, y se obtuvieron resultados similares para el andropogon y la pangola, en cuanto a la ganancia de peso vivo promedio anual. La brachiaria mostró una ganancia discreta (250 g/animal/día) con la carga de 4,5 animales/ha.

En otros dos trabajos, estos mismos autores (Alfonso et al., 1988a; 1988b) evaluaron estas mismas especies, pero con animales Cebú en la fase de ceba inicial (130-280 kg de PV). Un resumen de todos estos trabajos se expone en el Cuadro 1.2.1.2.

Cuadro 1.2.1.2.

<table>
<thead>
<tr>
<th>Carga (animal/ha)</th>
<th>Nivel de fertilización (kg de N/ha)</th>
<th>Ganancia animal (g/día)</th>
<th>Raza</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Andropogon</td>
<td>Pangola PA-32</td>
<td>Brachiaria</td>
</tr>
<tr>
<td></td>
<td>Promedio anual</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,0</td>
<td>100</td>
<td>383</td>
<td>353</td>
</tr>
<tr>
<td>4,5</td>
<td>100</td>
<td>314</td>
<td>357</td>
</tr>
<tr>
<td></td>
<td>Lluvia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,0</td>
<td>100</td>
<td>854</td>
<td>762</td>
</tr>
<tr>
<td>4,5</td>
<td>100</td>
<td>699</td>
<td>749</td>
</tr>
<tr>
<td></td>
<td>Seca</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,0</td>
<td>60</td>
<td>603</td>
<td>471</td>
</tr>
<tr>
<td>4,5</td>
<td>60</td>
<td>506</td>
<td>388</td>
</tr>
</tbody>
</table>

Como se observa, en las lluvias las ganancias más altas se registraron en el andropogon con la carga de 3 años Cebú/ha, seguido de la pangola; sin embargo, al aumentar la carga hasta 4,5 años/ha las ganancias individuales fueron mejores en la pangola, así como la producción de carne/ha/ano (1 230 vs 1 148 y 750 kg para pangola, andropogon y brachiaria, respectivamente).

En el sistema que comenzó en el período poco lluvioso y se fertilizó solo con 60 kg de N/ha, el andropogon resultó mejor para ambas cargas (603 y 506 g/animal/día), aunque hubo ganancias inferiores a las encontradas cuando se utilizaron 100 kg de N/ha, con lo que se confirmó el papel preponderante de la especie y la época del año en la producción animal. El aumento de la carga en todas las especies incrementó la producción por área, la que fue mayor en andropogon (752 kg/ha/año).

De los resultados productivos se desprende, que en dichas condiciones de explotación y alimentación es más factible el uso de los animales de la raza Cebú, mucho más rústicos y adaptados, ya que mantuvieron ganancias de PV muy superiores a las de los años de línea lechera.

Como continuación de los trabajos anteriores se estudió el efecto de las cargas 2, 3 y 4 animales/ha en toros Cebú en la fase de ceba final, con la diferencia de que se aplicó una fertilización de solo 20 kg de N/ha durante el período de evaluación (Pereira y Batista, 1991).

De nuevo se apreció un efecto significativo de la carga y la especie en la ganancia total del período de ceba final (cuadro 1.2.1.3); la mejor carga fue la de 2 toros/ha (592 g/animal/día) y las mejores especies la PA-32 y la...
brachiaria. El peso vivo alcanzado en las tres especies, con la carga de 2 toros/ha, fue superior a los 400 kg; los animales tenían una edad de 28 meses aproximadamente y un estado físico satisfactorio.

Cuadro 1.2.1.3. Ganancia de peso vivo (kg/animal/día) total del período (Pereira y Batista, 1991).

<table>
<thead>
<tr>
<th>Carga</th>
<th>Andropogon</th>
<th>PA-32</th>
<th>Brachiaria</th>
<th>x</th>
<th>ES ±</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0,554</td>
<td>0,648</td>
<td>0,575</td>
<td>0,592<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0,272</td>
<td>0,437</td>
<td>0,438</td>
<td>0,382<sup>b</sup></td>
<td>0,015***</td>
</tr>
<tr>
<td>4</td>
<td>0,321</td>
<td>0,456</td>
<td>0,397</td>
<td>0,391<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>0,382<sup>b</sup></td>
<td>0,514<sup>a</sup></td>
<td>0,470<sup>a</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>±0,026</td>
<td></td>
<td>CV = 14,2 %</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ES ± 0,015***

a, b Valores con superíndices no comunes difieren significativamente a P<0,05 (Duncan, 1955)

Con respecto al uso de la fertilización nitrogenada en especies mejoradas, Alfonso, Valdés y Duquesne (1985) estudiaron el efecto del nivel de fertilización y la carga en la producción de carne en pastoreo de guinea likoni en la ceba inicial y no observaron respuestas en la producción por hectárea después de 240 kg de N, cuando las cargas fueron de hasta 6 animales/ha; por el contrario, se equipararon a las obtenidas con 160 kg de N/ha.

En la ceba final (Alfonso, Hernández y Batista, 1986) se observó que el mayor incremento de peso vivo se obtuvo con la carga baja (1,5 animales/ha) y sin fertilización; sin embargo, al utilizar la carga de 4 toros/ha con 160 kg de N/ha/ano las ganancias individuales fueron de 401 g/animal/día, lo que representó más de 550 kg/ha/ano.

De estos resultados se puede concluir que el incremento en los niveles de fertilización nitrogenada propicia una elevación de las cargas y, por ende, una mayor producción por hectárea; sin embargo, el incremento de la carga provoca un decrecimiento en las ganancias individuales, las cuales solo se pueden igualar en la lluvia, debido a la alta disponibilidad de pastos en esa época, lo que permite una alta selección por los animales. No obstante, como promedio, las ganancias no sobrepasan los 500 g diarios.

Unido a esto, las mayores dosis de fertilizantes pueden favorecer la estabilidad del pastizal, por lo que se sugiere utilizar una carga de 1,5 animales/ha cuando no se dispone de fertilizante; 3,0 si existen posibilidades de aplicar alrededor de 80 kg, y 4,0 animales cuando se dispone de 120-160 kg de N/ha/ano.

Teniendo en cuenta el rápido deterioro de los pastizales típicos destinados a la ceba de bovinos (4-8 cuartones y corraleta rústica central) y el pobre comportamiento animal en la preceba, Valdés, Molina y Castillo (1996) evaluaron el comportamiento, la suplementación y el pastizal en el engorde de categorías bovinas mediante dos alternativas de manejo: efectuar la segregación de cuartones y suministrar ensilaje en la época poco lluviosa, o no segregar y suplementar con miel al 10 % de urea y proteína natural. El pasto (Cynodon nlemfuensis) se dividió en cuatro cuartones y se fertilizó con 50 kg de N/ha/ano.

Se encontraron diferencias en la ganancia de peso vivo individual entre las alternativas de segregación y no segregación en las categorías de preceba (560 vs 420 g/animal/día) y la de crecimiento ceba (620 vs 520), por lo que se denota un mejor comportamiento técnico cuando se empleó suplementación con miel al 10 % de urea más la proteína natural, con respecto al suministro de ensilaje. Estos datos son de suma importancia en la actualidad, ya que nuestras empresas de ceba apenas cuentan con los recursos y la infraestructura necesaria para la fabricación de ensilajes a partir de los excedentes de pastos, además de que la producción de estos es casi nula, por el deterioro paulatino ocurrido en las áreas de pastoreo y la invasión de especies indeseables como el marabú y la aroma, por lo que las alternativas de suplementación en la época de pocas lluvias son las más deseadas.

En este sentido, se han evaluado diferentes sistemas de producción de carne donde la miel-urea constituyó el suplemento principal de los animales en pastoreo.

Tanto en condiciones de investigación (Valdés y Castillo, 1993) como en sistemas de producción comerciales (Valdés, Díaz y Ayala, 1998), se ha evidenciado que lo más aconsejable es suplementar con este subproducto en la época poco lluviosa, cuando la disponibilidad de pastos es mínima y las ganancias de peso vivo se deprimen drásticamente. Ya en las lluvias, las ganancias son altas, incluso sin suplementar, y de usarse el suplemento en esa época puede existir una sustitución del consumo de pastos por el del suplemento. La variante más utilizada es la combinación de melaza con urea al 10 %, ad libitum, rotación en cuatro cuartones y cargas entre 2-3 animales/ha. Con estos sistemas se pueden obtener ganancias de alrededor de 500-550 g diarios, como promedio, en todo el ciclo de crecimiento-ceba y edades al sacrificio de 20-24 meses.
La combinación de la miel/urea con suplementos concentrados puede incrementar las ganancias de peso vivo. En este sentido, Loemba y Molina (1994) obtuvieron ganancias de 656 g/animal/día en aynjos mestizos Holstein x Cebú, que pastaban de forma restringida y recibían miel con 10 % de urea a voluntad, además de un suplemento concentrado de harina de girasol, a razón de 600 g/animal/día. Este sistema no mostró diferencias con otro, donde los animales recibieron la miel con 3 % de urea a voluntad (621 g/animal/día), aunque en el primero se reportó una reducción en el consumo de miel de un 60 % y, por tanto, un decremento del costo del kilogramo de aumento de peso vivo.

En México, Pérez, Hernández, Herrera y Bárcena (1997) obtuvieron ganancias de peso vivo en toretes que variaron entre 479 y 746 g/animal/día, en dependencia de la disponibilidad de pastos (estrella africana) y su combinación con 1,5 kg de un concentrado con 16 % de PB y 70 % de TND. Los mejores resultados en peso se obtuvieron con la disponibilidad de 3,5 kg de MS/100 kg de peso vivo, mientras que los menores fueron con la oferta de 2 kg.

Continuando con la búsqueda de soluciones en el suministro de proteína para el ganado de engorde, Valdés, Elías y Castillo (1996) realizaron una prueba con el empleo de la miel proteica casera (MPC) mezclada con miel urea al 3 %, como una alternativa proteico-energética al pastoreo de pasto estrella en la época poco lluviosa. La mezcla (50 % de MPC y 50 % de miel urea) se suministró a voluntad y se complementó con 240 g/animal/día de harina de girasol. Los animales (mestizos de Holstein) ganaron 540 g/animal/día durante la prueba, superando en 110 g (P<0,01) a un grupo que consumió 400 g de harina de girasol y 3 kg de miel al 3 % de urea sobre el mismo pastizal, el cual no se fertilizó y se pastoreó con una carga de 3 animales/ha. El uso de la mezcla de miele permitió el ahorro de 160 g diarios de la harina de girasol, fuente proteica de importación y deficitaria en la actualidad.

Por otra parte, los resultados obtenidos por Valdés, Elías y Castillo (1994) indican la posibilidad del uso de la saccharina rústica en la época poco lluviosa, como suplemento al pasto en la ceiba de machos bovinos en pastoreo. Con este producto de la industria azucarera, otorgado a razón de 3 kg/animal/día, se obtuvieron ganancias de 555 g/animal/día en la época citada, sin diferencias con un lote de toretes (mestizos de Holstein) que recibieron 370 g de harina de soya y 3 kg de miel con urea al 3 %. Según estos autores, este alimento es capaz de aportar las suficientes cantidades de proteína bruta y energía metabolizable al pasto, casi al mismo nivel de alimentos de reconocido potencial como la soya y la miel.

De los estudios anteriores se resume que los sistemas sin fertilizar o con baja fertilización (0-80 kg de N/ha) producen entre el 70 y 100 % de las ganancias de peso vivo por animal, con respecto a los mejores sistemas con alta fertilización, y entre 40-80 % de las ganancias por hectárea con relación a los sistemas con altos insumos. Por otra parte, se denota que los sistemas sin suplementación o con bajos insumos externos producen ganancias individuales entre 71 y 100 % con respecto a la mayoría de los sistemas donde se usa moderadamente la suplementación en el periodo poco lluvioso con miel final y distintas concentraciones de urea y suplementos proteicos, y entre 49-75 % con respecto a los de altos insumos externos.

Teniendo en cuenta el importante papel que pueden desempeñar las leguminosas en el mejoramiento del valor nutritivo y el rendimiento de los pastizales, así como en la sustitución de suplementos en la época de pocas lluvias, se condujeron varios trabajos para evaluar sistemas donde una parte del área, sembrada con leguminosas rastreras (Neonotonia wightii y Macroptilium atropurpureum), fue pastada en forma diferida durante la época poco lluviosa por animales mestizos, alternando con los pastos naturales; mientras que en la lluvia los cuartones de leguminosas no eran pastados para lograr la permanencia y recuperación de estas durante ese período (Valdés, Montoya, Chao y Duquesne, 1980; Chao, Valdés y Duquesne, 1982; Valdés, Alfonso y Duquesne, 1984).

Estos trabajos indicaron que el pastoreo diferido de la asociación en el 50 % del área total del pastizal, logró incrementar la producción de carne entre un 13 y 33 % con relación a la obtenida en el pasto nativo solo, incluso cuando este se suplementó con levadura torula a razón de 200 g/animal/día en el periodo poco lluvioso, época en que las ganancias en los pastos naturales sin leguminosas no llegaron, en ocasiones, a los 100 g/animal/día u ocurrieron pérdidas de peso.

Por su parte, Hernández, Alfonso y Duquesne (1988) diseñaron un sistema de pastoreo contínuo, donde el área de leguminosas se redujo hasta el 33 % del área total. Esta reducción del área diferida a menos del 50 % solucionó la dificultad de las bajas ganancias en las lluvias, ya que la carga solo se elevó de 2 a 3 animales/ha; por otra parte, el empleo de las leguminosas en forma restringida en esa época repercutió en la cantidad y la calidad del alimento ofertado, así como en la producción, la cual fue un 35 % mayor que sobre pastos nativos.

El uso de mezclas de leguminosas con gramíneas también fue reportado por Simón, Ugarte, González, Gutiérrez e Iglesiás (1993). Al comparar sistemas donde A. gayanus fue fertilizado con 100 kg de N/ha y los animales recibieron suplementación concentrada durante la época poco lluviosa (1,5 kg/animal/día), con una mezcla del citado pasto con kudzú, glycine, siratro, stylo y centrosema, no hubo diferencias en las ganancias de peso vivo (550 g/animal/día) en esa época, aunque las mayores disponibilidades de pasto se encontraron en el sistema de gramíneas fertilizadas.
Por su parte Ruiz, Febles, Castillo, Díaz, Bernal y Puentes (citados por Anon, 2000a), al comparar bancos de proteína de leguminosas rastreras con acceso libre o limitado de los animales, encontraron que los primeros lograron una mayor estabilidad del pastizal. En el tratamiento donde el banco ocupaba 75 % del área, los animales le dedicaron 73,4 % del tiempo total de pastoreo a la parte asociada y solo 22,6 % a la gramínea; mientras que en el sistema con 50 % fue de 59,7 y 37,9 % para la asociación y la gramínea sola, respectivamente.

Como una muestra del potencial que representan los sistemas con leguminosas rastreras, se ha encontrado que durante el período poco lluvioso todos los tratamientos que las involucran alcanzaron valores superiores de ganancia de peso (566-578 g/animal/día) que los sistemas con gramíneas solamente (412 g/animal/día). En este sentido, cuando el acceso al banco fue limitado la ganancia fue de 575 g/animal/día.

Como conclusión de los sistemas mencionados se pude resumir que, actualmente, existen cuatro grandes grupos de sistemas de crecimiento-ceba basados en pastos durante todo el año: los sistemas basados en pastos mejorados y fertilización nitrogenada, donde las ganancias de peso vivo fluctúan entre los 245-705 g/animal/día, en dependencia de la carga y el método de pastoreo empleado (continuo vs rotacional); los sistemas con pastos mejorados, miel-urea a diferentes proporciones y suplementos proteicos en la época poco lluviosa, donde las ganancias se encuentran entre los 470-780 g/ días; los sistemas de ceba basados en pastos suplementados con miel-urea todo el año y los sistemas de crecimiento-ceba de pastos más leguminosas rastreras, donde las ganancias en la época poco lluviosa (477-652 g/animal/día) se deben a un mayor consumo voluntario y una mayor digestibilidad que en los sistemas con gramíneas solamente. En este análisis no se incluyeron los sistemas llamados “superintensivos”, donde la carga animal puede rebasar los 10 animales/ha, debido a las altas dosis de fertilizantes nitrogenados empleadas (hasta 1 000 kg/ha/año) y las ganancias rebasan el kilogramo por animal diario.

El uso de los árboles leguminosos para la producción de carne, tanto en bancos de proteína como en asociaciones árbol-pasto en toda el área, comenzó en la década de los 80. La inclusión de la leguminosa arbórea L. leucocephala en toda el área de pastoreo cubierta por pastos naturales (Hernández, Alfonso y Duquesne, 1986), permitió ganancias individuales de 715 g/animal/día y un incremento del 51 % en la producción de carne/ha con relación a la obtenida a base de pasto nativo solamente. En las condiciones donde el año presentó una sequía extremo, este sistema silvopastoril logró mantener una ganancia individual promedio anual superior a los 400 g/día.

La utilización de este sistema en la ceba final de toros Cebú (Hernández et al., 1987) avaló, aun más, la asociación como una forma ventajosa de producir carne con bajos niveles de insumos externos. Las ganancias (419 g/animal/día) fueron superiores en un 73 % a las obtenidas con pasto natural solo (242 g/animal/día) y no difirieron de las de un sistema que incluyó la suplementación en la segunda mitad de la época poco lluviosa con 1,5 kg de miel con urea al 3 % y 200 g de harina de soya (409 g/animal/día).

Al utilizar A. gayanus como pasto introducido en pastoreo rotacional más banco de proteína de leucaena y glycine, Hernández et al. (1992) alcanzaron un peso al sacrificio de 448 kg a los 29 meses de edad y ganancias acumuladas promedio de 487 g/animal/día. Este sistema superó en un 64 % la producción de carne en pie del sistema tradicional, que produjo toros con un peso al sacrificio de 460 kg, pero a una edad superior a los 5 años.

Castillo et al. (citados por Ruiz y Febles, 1998) diseñaron sistemas de producción de carne bovina donde la preceba se realiza en áreas con leguminosas rastreras asociadas a pastos naturales (hasta 240 kg de PV) y la ceba final (hasta más de 400 kg) en asociaciones de pastos cultivados con leucaena. Algunos datos de estas investigaciones se presentan en el Cuadro 1.2.1.4.

Como se observa, en las tecnologías 4, 5 y 6 es factible obtener ganancias individuales superiores a los 440 g/animal/día, incluso cuando la preceba comienza en la época poco lluviosa, donde la disponibilidad de pastos declina drásticamente. Si el pastoreo en la época poco lluviosa se suple con cantidades moderadas de miel final (0,92 kg/animal/día), la tasa de crecimiento se eleva a más de 580 g/animal/día y el ciclo de crecimiento-ceba se acorta hasta 15,9 meses.

No obstante, las ganancias de las tecnologías 4 y 6 (569 y 582 g/animal/día, respectivamente) son similares, a pesar de que los animales en la última fueron suplidos con miel, lo que demuestra el efecto beneficioso de comenzar el pastoreo en el período lluvioso y usar pastos cultivados de buen valor nutritivo, que propician una adecuada fermentación del NH₃ en el rumen y, por ende, no se hace necesaria la suplementación con miele.

En Venezuela, al comparar sistemas de banco de proteína de L. leucocephala con el manejo comercial de potreros (pastos más concentrados y pastos más bloques multinutricionales), Chacón, Fossi, Marchena, Díaz y Armas (2000) encontraron diferencias entre los sistemas (P<0,001) en los cambios de peso de becerros mestizos de Holstein y Carora. Los animales que recibieron 750 g/día de pienso comercial ganaron más (642 g/animal/día) que aquellos que consumieron los bloques (526 g) o pastaban en el banco de leucaena (447 g/animal/día).
No obstante, plantean que aunque la respuesta biológica no favoreció al sistema de banco proteico, consideraciones de orden económico determinan que el uso de arbustivas es la alternativa más rentable, por los bajos costos de mantenimiento y la alta sustentabilidad que le confiere al sistema de producción.

Cuadro 1.2.1.4. Tecnologías de leguminosas en banco de proteína para la preceba y ceba bovina. (Castillo et al., según Ruiz y Febles, 1998).

<table>
<thead>
<tr>
<th>Indicadores</th>
<th>Tecnologías</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PN con 50 % de leguminosa rastrera</td>
</tr>
<tr>
<td></td>
<td>Con 30 % de leucaena</td>
</tr>
<tr>
<td></td>
<td>Guinea¹</td>
</tr>
<tr>
<td>Peso inicial (kg)</td>
<td>163</td>
</tr>
<tr>
<td>Peso final (kg)</td>
<td>426</td>
</tr>
<tr>
<td>Ganancia/día (g)</td>
<td>530</td>
</tr>
<tr>
<td>Ganancia/ha/año</td>
<td>438</td>
</tr>
<tr>
<td>Duración (meses)</td>
<td>16,5</td>
</tr>
<tr>
<td>kg de N/ha/año</td>
<td>no</td>
</tr>
<tr>
<td>Ópoca de inicio</td>
<td>Lluvias</td>
</tr>
<tr>
<td>Animales/ha</td>
<td>2</td>
</tr>
<tr>
<td>Consumo de miel</td>
<td>no</td>
</tr>
</tbody>
</table>

PN: Pasto Natural; 1…6- Tecnologías

También en Venezuela, las investigaciones con animales de ceba indican la posibilidad de utilizar con éxito las leguminosas arbóreas en la producción de carne, lográndose no solo aumentar la producción individual, sino también la carga animal. Así Dávila y Urbano (1996), al alimentar novillos en pastoreo con el uso de L. leucocephala como banco de proteína, lograron ganancias de peso promedio, para animales con acceso a la leucaena, de 840 g/animal/día, mientras que el grupo testigo obtuvo solo 370 g/animal/día.

Por su parte, Lourenco, Leme y de Queiroz Manella (2001), en un experimento realizado en Brasil que abarcó 634 días de pastoreo, evaluaron el comportamiento de machos bovinos que pastaban Brachiaria brizantha en diferentes sistemas de producción: pasto solo, pasto con suplementación concentrada en la seca, pasto con suplementación concentrada durante todo el año y pasto complementado con un banco de proteína de leucaena; las mejores ganancias de peso individual y por hectárea se obtuvieron en el sistema con pienso todo el año (535 g/animal/día y 1 331 kg/ha). Sin embargo, el sistema de banco proteico logró aceptables ganancias individuales (459 g/animal/día), las que no difirieron del sistema con suplementación en seca (497 g), por lo que estos autores avalan el uso de la tecnología de banco, por el ahorro de concentrados comerciales que esta implica.

En México, Carrete, Eguiarte y Sánchez (1993) desarrollaron sistemas de pastoreo en la época de seca para toretes Cebú cruzados con razas europeas, en pastos asociados de estrella africana (Cynodon plectostachyus) y leucaena. La asociación produjo ganancias diarias de peso vivo de 660 g/animal/día, con 18,5 kg de carne/animal y 64,8 kg de carne/ha. En un segundo ciclo de pastoreo la producción de carne fue de 671 g/animal/día, 18,8 kg de incremento de peso bruto y 66 kg/ha. Estas ganancias de peso fueron muy superiores a las que generalmente se obtienen en esta época en la región de Nayarit (donde se desarrolló el estudio) con praderas de estrella africana y los autores asumieron que estas se debieron a la presencia de la leucaena.

Los resultados obtenidos en Colombia por Cardona y Suárez (1996) también demuestran la superioridad de las asociaciones de árboles y gramíneas sobre el monocultivo de pastos, incluso fertilizados, para el engorde. La asociación de leucaena con B. decumbens aportó ganancias individuales diarias y por hectárea, superiores a las de una mezcla de pastos (estrella, pangola, grama, micay) fertilizados con 90 kg de N/ha y a la brachiaria sola sin fertilización. (Cuadro 1.2.1.5).

En Australia, en un experimento de pastoreo, Gutteridge (1997) evaluó el comportamiento de tres especies de árboles promisorios (Albizia chinesis, L. leucocephala cv. K 636 y Tipuana tipu) asociados con B. decumbens, para la ceba de machos bovinos. La leucaena fue el árbol que menos rindió; sin embargo, produjo las mejores ganancias de peso vivo, demostrando la alta calidad de su forraje y una mejor aceptabilidad. Las ganancias oscilaron entre 530-600 g; 500-540 g y 350-420 g/animal/día para leucaena, albizia y tijuana, respectivamente.

Jones y Palmer (1997) realizaron un experimento donde se evaluaron tres especies de Leucaena y una de Calliandra, reconocidas por su resistencia al psílido. A pesar de que los menores rendimientos de biomasa comestible, motivados por un intenso ataque del psílido, se reportaron en el cv. Cunningham (506 kg/ha contra
788 en el cv. Taramba; 650 en Leucaena diversifolia; 525 en Leucaena pallida y 711 en Calliandra calothyrsus), las mejores ganancias individuales, superiores a un kg/animal/día, se obtuvieron en esa arbustiva, seguida por la otra leucocephala (891 g/animal/día), la diversifolia (617), la pallida (486) y la calliandra (391 g/animal/día). A pesar de no reportar los datos numéricos, estos autores resumen que las menores ganancias en las otras leucaena están directamente relacionadas con una menor digestibilidad de la MS y altos contenidos de taninos, lignina y fibra.

Cuadro 1.2.1.5. Diferencias en ganancia de peso y producción de carne en pasturas solas y en asociación (Cardona et al., 1996).

<table>
<thead>
<tr>
<th>Indicadores</th>
<th>Mezcla de pastos con 90 kg de N/ha</th>
<th>Asociación de leucaena con brachiaria</th>
<th>Brachiaria sin fertilizar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raza</td>
<td>Cebú</td>
<td>Cebú</td>
<td>Cebú</td>
</tr>
<tr>
<td>Peso vivo inicial (kg)</td>
<td>159</td>
<td>159</td>
<td>159</td>
</tr>
<tr>
<td>Peso vivo final (kg)</td>
<td>421</td>
<td>466</td>
<td>425</td>
</tr>
<tr>
<td>Ganancia total (kg)</td>
<td>262</td>
<td>307</td>
<td>266</td>
</tr>
<tr>
<td>Ganancia diaria (kg)</td>
<td>0,647</td>
<td>0,757</td>
<td>0,657</td>
</tr>
<tr>
<td>Carga (animales/ha)</td>
<td>5,5</td>
<td>5,5</td>
<td>5,5</td>
</tr>
<tr>
<td>Carne producida (kg/ha/año)</td>
<td>1 298</td>
<td>1 521</td>
<td>1 319</td>
</tr>
</tbody>
</table>

Retomando los estudios realizados en Cuba, Castillo et al. (1998), al comparar un sistema de banco de proteína en pastos naturales con la asociación de árboles en toda el área, comprobaron que las ganancias individuales y por hectárea en la época poco lluviosa fueron mayores para el sistema asociado, demostrando el efecto positivo de la leucaena en los rendimientos de la ceba bovina.

En esta investigación las ganancias en el periodo total fueron de 425, 539 y 605 g/animal/día para los sistemas de pasto natural solo, banco en el 30% y asociación, respectivamente, con pesos finales de 312, 357 y 384 kg, los cuales se catalogar de satisfactorios para el genotipo animal estudiado (3/4 Cebú x 1/4 Holstein).

Estos mismos autores desarrollaron diferentes sistemas de producción de carne con el uso de la leucaena en bancos de proteína, con la inclusión de la leguminosa en el 30 y 50 % del área y diferentes tipos de pastos. En estos sistemas las ganancias diarias rebasaron los 460 g/animal/día, cuando las cargas no se elevaron por encima de los 3 animales/ha y el pasto utilizado fue cultivado (Cuadro 1.2.1.6). Las mayores ganancias por hectárea se obtuvieron cuando el banco ocupó el 30 % del área, se fertilizó el pasto con moderadas dosis de N y se rotó en cuatro cuartones.

Cuadro 1.2.1.6. Estudio del comportamiento de los machos bovinos en sistemas de leucaena (Adaptado de Castillo et al., 1998).

<table>
<thead>
<tr>
<th>Área de leucaena (%)</th>
<th>Gramíneas</th>
<th>Carga (a/ha)</th>
<th>Suplemento</th>
<th>N kg/ha/año</th>
<th>Ganancia g/animal/día</th>
<th>kg/ha/año</th>
<th>Cuartones</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Guinea</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>538</td>
<td>392</td>
<td>4</td>
</tr>
<tr>
<td>30</td>
<td>Estrella</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>465</td>
<td>509</td>
<td>4</td>
</tr>
<tr>
<td>30</td>
<td>Estrella</td>
<td>3</td>
<td>-</td>
<td>90</td>
<td>532</td>
<td>583</td>
<td>4</td>
</tr>
<tr>
<td>30</td>
<td>Estrella</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>380</td>
<td>465</td>
<td>24</td>
</tr>
<tr>
<td>30</td>
<td>Natural</td>
<td>2</td>
<td>Caña+urea</td>
<td>-</td>
<td>371</td>
<td>271</td>
<td>4</td>
</tr>
<tr>
<td>50</td>
<td>Guinea</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>556</td>
<td>406</td>
<td>4</td>
</tr>
</tbody>
</table>

De acuerdo con los resultados obtenidos por Castillo, Ruiz, Febles, Ramírez, Puentes, Bernal y Díaz (1992), para la producción de carne bovina basada en P. maximum y leucaena, sin riego ni fertilización, se sugiere la utilización de bancos de proteína de libre acceso, donde la leucaena se siembra en el 50 % o el 30 % del área total del pastizal, preferiblemente con 2 animales/ha y sin suplementación. Con estos sistemas las ganancias de peso vivo fluctúan entre 500-560 g/animal/día, con pesos al sacrificio superiores a los 400 kg.

No solo la leucaena ha sido objeto de estudio para la ceba de machos bovinos en pastoreo. En un estudio realizado por Hernández (2000) se evaluó el comportamiento en pastoreo de cuatro sistemas de engorde, con y sin árboles, donde el pasto base fue la guinea likoni, la cual se asoció con L. leucocephala, Bauhinia purpurea y
A. lebbeck. Se empleó una carga de 3 animales por hectárea y no se utilizó suplementación, riego ni fertilización, y hubo agua y sales a voluntad (Cuadro 1.2.1.7).

Cuadro 1.2.1.7. Comportamiento en pastoreo de animales Cebú en sistemas con y sin árboles en toda el área de pastoreo (Hernández, 2000).

<table>
<thead>
<tr>
<th>Sistemas</th>
<th>PV inicial (kg/animal)</th>
<th>PV final (kg/animal)</th>
<th>Ganancia bruta (kg/animal)</th>
<th>Ganancia acumulada (g/animal/día)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leucaena con guinea</td>
<td>226,9</td>
<td>424,0</td>
<td>197,1</td>
<td>788</td>
</tr>
<tr>
<td>Bauhinia con guinea</td>
<td>226,3</td>
<td>415,5</td>
<td>189,1</td>
<td>757</td>
</tr>
<tr>
<td>Albizia con guinea</td>
<td>227,0</td>
<td>409,2</td>
<td>182,2</td>
<td>729</td>
</tr>
<tr>
<td>Guinea sola</td>
<td>226,9</td>
<td>362,2</td>
<td>135,3</td>
<td>541</td>
</tr>
</tbody>
</table>

Los resultados del comportamiento animal demuestran la superioridad de los sistemas asociados sobre los sistemas tradicionales con insumos, sin diferencias entre ellos en cuanto a ganancias de peso. Es importante reconocer que la inclusión de otras arbóreas en las investigaciones, en este caso A. lebbeck y B. purpurea, evidenció una alta potencialidad de su uso para la ceba bovina con bajos insumos externos.

Otras leguminosas arbóreas forrajeras se estudian actualmente para el diseño de sistemas de crecimiento ceba en pastoreo, aunque no siempre se usan directamente en asociaciones o bancos de pastoreo.

En Costa Rica, toretes mestizos Brangus en pastoreo incrementaron significativamente su tasa de crecimiento cuando el nivel de consumo de materia seca del follaje de Erythrina cocleata, como suplemento proteico, fue igual o superior al 0,30 % del peso vivo (Vargas, 1987).

También los resultados de Escobar (1996), al utilizar follaje de Gliricidia sepium (matarratón) ofrecido fresco en comederos en la alimentación de becerros en crecimiento posdestete, y los de Chacón (1998) en la zona de pie de monte andino, Venezuela, con harina de matarratón y alimento balanceado comercial en la ceba de toros en pastoreo, así lo demuestran.

1.2.2. Hembras en desarrollo

Es bien conocido que las hembras bovinas en crecimiento se subalimentan y son víctimas de un mal manejo zootécnico en casi toda el área tropical. Comúnmente, estas pastan en áreas de mala calidad y, además, reciben una pobre suplementación y en ocasiones ninguna. Esto trae como consecuencia que, a largo plazo, la deficiente alimentación o la escasez de nutrientes afecte los rendimientos reproductivos, de tal forma que incluso suplementando posteriormente con dietas de alto valor nutritivo es imposible restablecer los rendimientos, aunque el animal posea un peso vivo lo suficientemente grande para su actividad reproductiva (Perón 1984).

Sin embargo, los estudios de Rosete y Zamora (1988) indican que con planos adecuados de alimentación y ganancias por encima de 400 g/día, la novilla, futura madre, puede tener su primer estro con un peso adecuado (280 kg para razas grandes), lo que permitirá una gestación temprana, aproximadamente 1-2 meses después de su incorporación, con 1-2 servicios por gestación.

Si el aumento de peso es acelerado (600 g/animal/día o más) esto propicia partos a la edad de 27 meses, aproximadamente; mientras que las novillas que ganan solo 350 g/día alcanzan gestarse con un peso adecuado, solo después de 30 meses de edad, lo que provoca partos tardíos de 39 meses o más.

Por su parte, Álvarez y Hernández (1999) plantean que es necesario garantizar en las hembras de reemplazo una ganancia diaria de 600-700 g/animal desde los 3-4 meses hasta la aparición de la pubertad. Estas deben ganar más de 700 g desde la pubertad hasta los 24 meses de edad, de manera tal que, al gestarse, cuenten con no menos de 280 kg de peso vivo y una condición corporal entre 3 y 3,5 (escala de 5 puntos), y el primer parto lo alcance con 425-450 kg de peso, a una edad menor que 30 meses. A su vez, recomiendan que para la búsqueda de una mayor eficiencia reproductiva, el ganadero tiene que lograr en la categoría de novillas un intervalo incorporación-inseminación de 42 días, gestarla antes de los 60 días y no más de 350 días después de incorporada, para lograr su primer parto.

Según James y Tomlinson (1988) la monta de las novillas a edades tempranas, no mayores que 15 meses, es ventajosa desde el punto de vista económico. Esto implica que las ganancias desde el nacimiento hasta la incorporación a la reproducción deben estar en el orden de los 600-800 g/animal/día. No se recomiendan ganancias mayores a estas, o por encima de 900 g/día, desde los 3 hasta los 12 meses, ya que se puede deprimir el crecimiento de los tejidos secretores e incrementar la deposición de grasa en la glándula mamaria en desarrollo cuando las relaciones energía/proteína no resultan adecuadas.
Tampoco es aconsejable la inseminación con bajo peso, ya que los rendimientos de leche durante la primera lactancia son bajos y hay riesgos de obtener terneros débiles y de bajo peso al nacer.

Actualmente, el peso de incorporación de novillas Holstein y sus cruces en Cuba, en condiciones de producción, varía normalmente entre 270 y 280 kg de peso vivo, con una edad de incorporación que se encuentra por encima de lo deseado (27-28 meses y hasta 3 años), en vez de la que deben tener las novillas normalmente (19-20 meses) (Mejías, R., 2003, comunicación personal).

Estos indicadores no se corresponden con lo obtenido en las evaluaciones comparativas de tres genotipos lecheros cruzados, Mambi, Siboney y Taino (3/4 H x 1/4 C, 5/8 H x 3/8 C y 5/8 H x 3/8 Criollo, respectivamente) para rasgos de crecimiento y reproducción en novillas, realizadas por López, Ruiz y Mejías (1996). Estos investigadores encontraron una tasa de crecimiento similar en los tres niveles de crecimiento evaluados, con medias generales de 19,61 meses, 297,68 kg y 507 g/día para la edad, el peso vivo y el peso por edad a la incorporación.

Sin embargo, las ganancias y edades mencionadas anteriormente son muy difíciles de alcanzar en Cuba en las condiciones actuales por las que atraviesa la ganadería, donde hay gran déficit alimentario, principalmente en la época poco lluviosa, lo que se conjuga con un deficiente manejo zootécnico en las edades tempranas de desarrollo de la hembra en crecimiento. Los resultados de los autores citados se lograron fundamentalmente en dietas con cereales, suplementos proteicos y forrajes de alto valor nutritivo, y en condiciones óptimas de manejo zootécnico, con los animales en confinamiento total o semiconfinamiento. Por lo tanto, se hace necesario buscar alternativas de alimentación que aunque no cumplan con los indicadores de ganancias deseados, al menos se ajusten a las condiciones prevalentes y a los recursos naturales disponibles en el país, y que garanticen la sostenibilidad necesaria en el componente animal.

En este esfuerzo, diferentes tipos de pastos y sistemas de alimentación han sido probados en la cría de hembras de reemplazo de la raza Holstein y sus cruces.

Zamora, Elías y Zarragoitía (1985; 1987) utilizaron diferentes cargas (4, 6 y 8 terneras/ha) para evaluar el desarrollo de estas en pasto pangola altamente fertilizado y regado, y comprobaron que la utilización de altos insumos provocó una alta disponibilidad de pastos y, por ende, un crecimiento similar en todas las novillas (560, 570 y 570 g/animal/día) en la época poco lluviosa. En estos ensayos se demostró que la pangola fertilizada con 400-80-160 kg de NPK permite edades a la incorporación entre 16,5 y 19,6 meses con 280-290 kg de PV.

Este mismo pasto, en secano y con la disminución de la dosis de fertilizantes (250-40-40 kg de N, P, K) y la inclusión de concentrados y bagaçillo miel-urea en la dieta de afojas, mantuvo ganancias y edades a la incorporación similares a las de los sistemas anteriores (Zarragoitía, Ugarte, Andrade y Chongo, 1986).

También la bermuda cruzada y el pasto estrella se han utilizado en la alimentación de hembras, con cargas entre 6 y 8 animales/ha y altas dosis de fertilizantes y riego en la época poco lluviosa (Zamora y Zarragoitía, 1988; Zamora y González, 1989). Estos sistemas, con la utilización o no de alimentos concentrados y bagaçillo miel/urea, producen ganancias entre 400 y 470 g/animal/día, una edad al servicio de 17-22 meses y un peso vivo a la inseminación artificial de 275-285 kg. Resultados similares reportó Marrero (1989) con terneras en pasto bermuda cruzada No. 1 en condiciones de secano y suplementadas con 1 kg de concentrado. Por su parte Cardoso, Seiffert, Marques da Silva, Euclides y Vieira (1997) comprobaron que la sustitución de pastos nativos por especies mejoradas en Brasil, en este caso B. decumbens, posibilitó incrementar las ganancias de peso vivo de novillas Cebú en la época de sequía y, por consiguiente, anticipar la edad al primer parto de 4 a 3 años de edad. En sus investigaciones, las mejores ganancias individuales se obtuvieron con la menor carga (1,5 animales/ha y 204 g/animal/día).

El uso de la caña enteramente molido, como forraje, ha mostrado resultados satisfactorios en la alimentación de las hembras mestizadas desde edades tempranas (Rodríguez et al., citados por Rodríguez, 1998). En este sentido, la adición de 200 g de urea a la caña troceada (20-25 kg de material verde) propició ganancias diarias en la época poco lluviosa de 511 g por animal, mientras que los animales que recibieron caña troceada, sin urea, perdieron 67 g diarios.

También en el Instituto de Ciencia Animal se ha comprobado que la suplementación con miel o caña en hembras en desarrollo durante el periodo poco lluvioso, no incrementa las ganancias individuales por encima de los 550 g/animal/día. Sin embargo, cuando se introduce la urea para estos dos tipos de alimentos, las ganancias se elevan hasta 700 g, lo que señala la necesidad de una cantidad de nitrógeno que se fertilice en el rumen, haciendo más eficiente estos sistemas (Anon, 1999b).

La saccharina, alimento resultante de la fermentación en estado sólido de la caña de azúcar, también ha sido utilizada como suplemento proteico-energético de hembras bovinas en pastizales de gramíneas de secano. Zarragoitía, Elías, Ruiz, Plaza y Rodríguez (1990) compararon sistemas de pastoreo de bermuda 68 + 2 kg de concentrado (58 % de saccharina), con sistemas donde la gramínea estaba asociada con leucaena, y encontraron que la ganancia de peso vivo hasta la incorporación a la reproducción fue 735 g/día para saccharina, superior (P<0,01) a la de los sistemas con leucaena (611 g) y leucaena más miel final como suplemento (622 g/animal/día). En este experimento la edad a la incorporación estuvo por debajo de los 20
meses en todos los tratamientos y los autores no encontraron respuestas a la inclusión de miel final en la dieta de la asociación.

Cuando la saccharina sustituyó en un 80% al concentrado (2 kg diarios) y se incluyó en la dieta de hembras que pastaban bermuda 68 asociada con leucaena (Zarragoitia, Elias, Ruiz y Rodriguez, 1992), las ganancias de peso vivo fueron de 521 g/día y no se encontraron respuestas a la suplementación con concentrado, ya que los animales que pastaron en la asociación sin recibir suplementos ganaron lo mismo (530 g/animal/día). Esto pudo ocurrir debido a la alta cantidad de nitrógeno que se acumuló en el rumen de estos animales, ya que la saccharina tiene un contenido de PB cercano al 20% y el follaje de leucaena oscila entre 22,1-26%, el cual probablemente no pudo ser utilizado por la baja cantidad de energía de la dieta, lo que afectó la relación proteína/energía.

Por su parte, Carrasco, Garcia López y Fundora (2000) evaluaron el uso de la caña fermentada con excreta vacuna (CFE), como complemento al pasto para hembras en condiciones de producción, y encontraron ganancias de peso individuales superiores a los 600 g/animal/día en los animales estudiados.

Las altas ganancias de este experimento se atribuyen a una mayor eficiencia de utilización de la proteína en el tracto gastrointestinal y, por otra parte, a la generación de metabolitos durante el proceso de obtención de la CFE, tales como AGVT, vitaminas, aminoácidos y enzimas, los cuales favorecen el ambiente ruminal y pueden influir en los resultados alcanzados.

También Zamora, Elias y Lara (1996) estudiaron el efecto de incluir subproductos de la industria azucarera, en este caso Gigabú, en el pienso que se le suministraba a novillas en pastoreo y encontraron poca influencia de este en la ganancia diaria de los animales.

Las ganancias obtenidas estuvieron entre los 444 y 479 g/animal/día como promedio, con valores incluso por debajo de 400 g en la segunda época poco lluviosa, lo que se atribuye a un déficit energético en la ración para alcanzar 500 g/animal/día.

Con el objetivo de demostrar la factibilidad de la sustitución parcial de los concentrados por mezclas de miel final y miel proteica casera en el comportamiento de las hembras bovinas, Zarragoitia et al. (1992) compararon diferentes sistemas de alimentación donde la bermuda 67, fertilizada con 100 kg de N/ha/año, fue el pasto base. En un sistema los animales se suplementaron con concentrados, tanto en la época poco lluviosa como en las lluvias (2 y 1 kg/animal/día, respectivamente), en los otros se sustituyó una parte del concentrado (1 kg) en el período poco lluvioso por las mezclas de miel final-MPC a voluntad y no se suplementó en la época lluviosa.

Las mejores ganancias de peso se obtuvieron en el sistema donde la mezcla fue de 40:60 (MF-MPC), con 586 g/animal/día, aunque sin diferir del sistema con concentrados todo el año (568 g) y donde la mezcla fue de 80:20 (503 g). Las edades (19-20 meses) y el peso vivo a la incorporación (320-321 kg) fueron similares en todos los sistemas, por lo que se puede inferir que la utilización de estas mezclas de mieles puede sustituir parcialmente el concentrado para las hembras bovinas, sin perjudicar su comportamiento.

Mislevey, Pate, Martín y Ruter (1997), en un ensayo de tres años, también estudiaron el efecto de la suplementación energética en los rendimientos productivos de añojas en pastoreo de dos cultivares de pasto estrella y uno de bermuda, al ofertar miel y harina de algodón (80-20) a razón de 1,4 kg/animal/día. Las mejores ganancias, como promedio para los tres pastos, se obtuvieron en los animales suplementados (350 vs 230 g/animal/día) para los tratamientos con suplemento y pasto solo respectivamente); este efecto fue mucho mayor en los momentos de estrés por inundación en los pastizales durante la época lluviosa, cuando los animales sin suplementar no rebasaron los 200 g de ganancia y, en ocasiones, perdieron peso.

Zamora, Plaza y Lara (2000) describen un sistema de alimentación donde el concentrado (16,8% de PB y 4,5% de FB) se ofrece, de forma libre, a partir de los 30 días de nacidas las terneras; se mantiene a razón de 2 kg diarios desde los 2 hasta los 9 meses y se reduce hasta 1,5 kg/animal/día desde los 10 hasta los 18 meses. El pastoreo comienza a los 4 meses de edad, en cuartones de pastos cultivados y fertilizados con 80 kg de N/ha/año, los cuales deben garantizar disponibilidades mayores de 6 kg de MS por cada 100 kg de peso vivo.

Las ganancias que se obtienen desde los 180 días hasta los 18 meses de edad son superiores a los 500 g/animal/día (571) y se logra un peso a la incorporación de 328 kg. Con este sistema, la edad al primer servicio se obtiene 1,4 meses después de la incorporación a la reproducción y la edad a la gestación a los 21,3 meses, con un peso de 364 kg.

Con respecto al uso de las leguminosas para la alimentación de las hembras de reemplazo, Simón et al. (1993) reportaron que durante la época de pocas lluvias es posible alcanzar ganancias individuales superiores a los 500 g/animal/día en añojas en crecimiento que pastan asociaciones de andropogon con centrosema, de forma rotacional y con carga de 2 animales/ha, lo que no difirió de lo obtenido en guineas común fertilizadas con 200-30-50 kg de NPK/ha/año.

Estos mismos autores obtuvieron ganancias de 477 y 431 g/animal/día en una asociación de guineas común con leucaena y guineas común fertilizadas con 150 kg de N/ha/año, respectivamente, y no observaron diferencias en las ganancias individuales entre sistemas.
En la India, Shankar, Gupta y Upadhyay (1997) estudiaron el efecto de la inclusión de stylosanthes en pastos nativos de *Heteropogon contortus* y *Sehima nervosus*, combinado con la oferta de forraje o heno de leucaena, en las ganancias de peso de hembras en crecimiento. Se obtuvieron ganancias que, aunque no fueron las más adecuadas (444 y 295 g/animal/día, respectivamente), superaron las obtenidas en pastos sin suplementación.

Por su parte Mejías, Ruiz y López (2000) estudiaron un sistema donde se demostró la ventaja de una adecuada alimentación en la fase posdestete de las terneras, que pastorearon una asociación de pangola (*D. decumbens*) y stylo (*Stylosanthes guianensis*), y obtuvieron ganancias en esa fase inicial de 478 g/animal/día. Este incremento diario de peso es un buen valor y se corresponde con lo señalado como adecuado para lograr un desarrollo normal de la hembra bovina por Rosete y Zamora (1990). Estas ganancias, además, les permitieron arribar a la etapa de añojas con más de 200 kg de peso vivo y comenzar el pastoreo en una asociación de leucaena-guinea en el 100 % del área, donde las ganancias diarias fueron de 513 g/animal, una edad a la incorporación de 22,3 meses, con un peso vivo de 304,5 kg. Es de destacar que en el período poco lluvioso las ganancias superaron los 420 g/animal/día, incluso sin suplementos adicionales, solo basado en pastoreo de la asociación.

En estas investigaciones, la edad y el peso a la incorporación mostraron valores adecuados para el propósito (Mejías, Zamora y Hernández, 1998), mientras que el intervalo de incorporación-primer servicio (38,4 días) y la edad a la gestación de 24,1 meses indican la posibilidad del primer parto a edades tempranas.

Los datos de Franco y Vargas (1998) corroboran la importancia de las leguminosas en la alimentación de las hembras en la etapa de terneras y hasta el destete. La inclusión de la leucaena (0,8-1 kg en base fresca/ternera/día), junto al forraje de king grass, permitió reducir la edad al destete de 6 a 4 meses, con un ahorro de 90 L de leche por ternero. Además, se elevó la ganancia media por ternera de 300 a más de 450 g diarios. Estimados realizados por estos autores predicen que si estas ganancias se mantienen en la fase posdestete, podría reducirse la edad de incorporación a la reproducción de 27 a 18,5 meses de edad.

Con relación a esto, Escobar et al. (1995) demostraron que las leguminosas arbustivas pueden realizar un importante aporte de nutrientes en esta fase para compensar el déficit de estos en los forrajes tropicales y favorecer un mejor comportamiento del peso vivo. En experimentos donde el pasto estrella era el alimento base, el peso vivo de los animales mejoró con la suplementación de gliricidia (426 g/animal/día contra solo 194 g en animales sin suplementar) y las respuestas fueron mayores en los animales con un peso de 100 a 115 kg, lo cual es relativo a los mayores requerimientos de nitrógeno en esta fase del crecimiento posdestete.

En este mismo sentido, Hernández, Carballo y Reyes (1997) sustituyeron la cría de hembras en pastos naturales, por un sistema de banco de proteína con *L. leucocephala* (2 300 plantas/ha) y *A. gayanus* como pasto base. En tres ciclos de manejo se obtuvo una edad promedio de incorporación de 25 meses, con pesos mayores que 275 kg. Anteriormente la crianza de estas hembras Cebú en pastos nativos resultaba muy dilatada, con edades a la incorporación superiores a los 30 meses y muy bajas ganancias de peso vivo en la época de pocas lluvias.

Con respecto a las asociaciones, Zarragoitia et al. (1992) compararon el sistema tradicional de pastoreo de bermuda 68 con el uso de concentrados, contra un sistema de asociación de este pasto con leucaena y no
encontraron diferencias en las ganancias de peso vivo (569 vs 530 g/animal/día), la edad a la incorporación (18 vs 19,3 meses) y el peso a la incorporación (323 vs 321 kg), lo que demuestra el potencial de la asociación, desde el punto de vista económico, por el ahorro de concentrados y fertilizantes que se origina.

En condiciones de clima tropical seco, en México, Sánchez, Carrete y Eguiarte (1993) evaluaron el pastoreo de praderas de estrella solo y asociado con leucaena. Durante los 393 días que duró el experimento la ganancia diaria de peso vivo fue superior (P<0,05) en la asociación, con 460 g vs 260 g en el monocultivo y la producción de carne/ha superó en un 211 % a la producida en este último.

Por su parte, Lazo, Ruiz, Febles, Zarragoitía, Bernal y Díaz (1994) desarrollaron tres ciclos de cría de hembras de reemplazo con el objetivo de identificar variedades de leucaena para pastoreo y obtuvieron ganancias diarias promedio de 426 g/animal, sin presentación de cuadros tóxicos. En este experimento los animales comenzaron a pastar la leucaena a los 5 meses de sembrada, cuando la altura de las plantas osciló entre 140 y 176 cm.

Como continuación de esta línea de trabajo, y teniendo en cuenta que Cuba posee un importante germoplasma de especies arbóreas forrajeras, Simón et al. (1995) condujeron un experimento para determinar las posibilidades del algarrobo de olor (A. lebbeck) asociado a pastos naturales para la cría de hembras mestizas 5/8 Holstein x 3/8 Cebú. Se encontraron diferencias significativas (P<0,01) en las ganancias diarias de PV a favor del sistema con albizia en comparación con los animales que pastorearon solo pasto natural en los dos períodos evaluados (415 vs 371 y 337 vs 160 g/animal/día), donde la disponibilidad de MS y de PB en el tratamiento de albizia resultó determinante en el PV final (335 vs 308 kg) y en la ganancia acumulada (397 vs 296 g).

En la mayoría de los trabajos experimentales hasta hoy realizados, se observa que, para las condiciones de Cuba, las ganancias de las hembras en desarrollo en pastoreo se encuentran dentro del rango de moderadas (entre 350-600 g/animal/día), con los mayores valores cuando se usan pastos altamente fertilizados y se suple en la época poco lluviosa con diferentes fuentes energético-proteicas. El uso de sistemas con leguminosas, tanto rastreras como arbustivas, propicia el ahorro de los suplementos y del fertilizante nitrogenado, lo que los convierte en sistemas más viables desde el punto de vista económico.
Capítulo II. Metodología y secuencia experimental

II.1 Ubicación del área experimental

Los experimentos y la fase de validación a escala de producción se desarrollaron en la Estación Experimental de Pastos y Forrajes "Indio Hatuey", la cual se encuentra situada en la zona aledaña al central azucarero España Republicana, en el municipio Perico, provincia de Matanzas, en el punto geográfico determinado por los 22°48’7” de latitud norte y los 81°1’ de longitud oeste, a 19,01 m sobre el nivel del mar.

II.2. Condiciones climáticas

Las condiciones del área experimental se corresponden con un clima clasificado como de sabana tropical, característico de Cuba (Academia de Ciencias de Cuba, 1989). En él predominan las condiciones tropicales marítimas, con marcada estacionalidad de las lluvias, donde las masas de aire árticas y polares continentales hacen sentir su influencia en la época invernal poco lluviosa, que se extiende desde noviembre hasta abril. Este clima se caracteriza por una media anual de las precipitaciones superior a los 1 320 mm, con un valor relativo mayor que el 80 % en el período de mayo a octubre.

Los valores de precipitación de los diferentes experimentos se exponen en las figuras II.2.1 y II.2.2, donde se pone de manifiesto lo planteado anteriormente en cuanto a la estacionalidad de las lluvias, aunque hay que destacar que los datos de los experimentos I y II no se consideran típicos para las condiciones de la localidad, pues el primero fue muy lluvioso y el segundo relativamente menos lluvioso y con fluctuaciones.
II.3 Características del suelo

El suelo sobre el que se realizó el estudio experimental fue de topografía plana, catalogado como Ferralítico Rojo lixiviado (Hernández, Pérez, Bosch, Rivero, Camacho, Ruiz, Jaimez, Marson, Obregón, Torres, González, Orellana, Paneque, Mesa, Fuentes, Durán, Peña, Cid, Ponce, Hernández, Frómeta, Fernández, Garcés, Morales, Suárez, Martínez y Ruiz, 1999), el cual es característico del 15 % (aproximadamente) del área del país y se encuentra con mayor frecuencia en los territorios de las provincias de La Habana, Matanzas, Ciego de Ávila y algunas zonas de Cienfuegos, Villa Clara y Camagüey.

El pH tendió a ser ligeramente ácido, mientras que el contenido de materia orgánica hasta los 56 cm fue medio según la clasificación de Walkley y Black (Rodríguez, 2001), ya que se encuentra en el rango de 2,5 a 4,0 %. El contenido de N total se consideró bajo para todas las profundidades, así como el de fósforo disponible, mientras que las bases intercambiables (K, Ca, Mg y Na) mostraron valores moderados.

En el cuadro II.3.1 se exponen algunas de las características agroquímicas del suelo del área experimental.

Cuadro II.3.1. Características agroquímicas del suelo en el área experimental.

<table>
<thead>
<tr>
<th>Profundidad (cm)</th>
<th>pH (H_2O)</th>
<th>Nt (%)</th>
<th>MO (%)</th>
<th>P_2O_5 (ppm)</th>
<th>Cationes cambiables</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-24</td>
<td>6,3</td>
<td>0,11</td>
<td>3,68</td>
<td>22,8</td>
<td>Ca^{++} 9,6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mg^{++} 3,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Na^+ 0,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K^+ 0,12</td>
</tr>
<tr>
<td>24-56</td>
<td>6,4</td>
<td>0,10</td>
<td>3,27</td>
<td>15,8</td>
<td>Ca^{++} 9,4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mg^{++} 2,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Na^+ 0,17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K^+ 0,23</td>
</tr>
<tr>
<td>56-84</td>
<td>6,2</td>
<td>0,06</td>
<td>1,9</td>
<td>12,3</td>
<td>Ca^{++} 4,4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mg^{++} 2,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Na^+ 0,19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K^+ 0,11</td>
</tr>
</tbody>
</table>

II.4 Mediciones realizadas en el pastizal

II.4.1 Disponibilidad de pastos

En los dos primeros experimentos la disponibilidad de pastos se estimó por el método tradicional de muestreo (Senra y Venereo, 1986). Se utilizaron marcos de 0,25 m2, que se tiraron de forma sistemática 25 veces dentro del cuartón en que se hacía el muestreo, el cual se había dividido previamente en segmentos o estratos, para lograr su homogeneidad. Estos marcos se cortaron y se pesaron, para determinar posteriormente el rendimiento por hectárea y por cuartón. Los muestreos se realizaron mensualmente, el día antes de la entrada de los animales a los cuartones donde se iba a iniciar el pastoreo, y a la salida de estos para estimar el residuo, por lo que al final de la evaluación se habían abarcado todos los cuartones de los sistemas. El área de los cuartones muestreados fue de 1 ha cada uno.

Paralelamente a los muestreos de disponibilidad, se tomaron al azar muestras de pastos (hasta 1 000 g) para determinar su calidad, simulando con la mano la selección que hacía el animal en pastoreo.

En las investigaciones posteriores, donde aumentó el número de cuartones, así como su tamaño (1,2 ha), la disponibilidad del pasto se estimó mensualmente mediante el método visual recomendado por Haydock y Shaw (1975) y Martínez, Pereira, Iglesias y Torres (1990), para lo cual se hicieron 80 observaciones por cuartón en cada muestreo. También se tomaron muestras de pastos para determinar su calidad, simulando con la mano la selección que hace el animal en pastoreo.

II.4.2 Disponibilidad de leucaena

La disponibilidad de la arbórea se estimó el mismo día en que se hacía el muestreo de los pastos, en el 3 % de los árboles establecidos en cada cuartón (entre 9 y 20 árboles en dependencia del tamaño del cuartón), simulando el ramoneo que realizaban los animales al follaje accesible, a una altura predeterminada según su tamaño (Hernández, 2000). De esta forma, con los animales menores (100-170 kg de peso vivo) se muestreó el follaje accesible hasta los 170 cm de altura; mientras que cuando los animales sobrepasaron ese peso y hasta los 300-400 kg, la altura de muestreo se ajustó hasta los 200 cm. Aquí se aplicó la técnica del "ordeño" de las partes tiernas de la planta (hojas y tallos con diámetro menor de 5 mm, que se quebraban con la acción del muestreador).

Cuando se realizó la poda, siempre en la época poco lluviosa y en función de la disponibilidad de pastos (árboles con más de 2,5 m de altura y según la planificación), también se estimó la disponibilidad del follaje
podado en el 3 % de los árboles cortados, pero en este caso se tuvo en cuenta todo el follaje tierno disponible, ya que se observó que los animales hacen un consumo casi total de este.

II.4.3 Composición botánica

En todos los experimentos, la variación de la composición botánica se determinó por el "método de los pasos" descrito por Anon (1980) y se realizaron 300 observaciones por hectárea. En el caso de la leucaena, su población se estimó mediante el conteo total de las plantas establecidas. Ambas mediciones se realizaron al inicio y al final de cada época del año (lluviosa y poco lluviosa).

II.5 Análisis de laboratorio

Después de cada muestreo se enviaron al laboratorio muestras representativas de los pastos y el follaje de leucaena para determinar la composición química de estos alimentos. Los análisis de laboratorio efectuados fueron: porcentaje de materia seca (MS), proteína bruta (PB), fibra bruta (FB), calcio (Ca) y fósforo (P), todos según las técnicas descritas por la AOAC (1990).

II.6 Mediciones en los animales

Los animales, en todos los experimentos, se pesaron una vez al mes en el horario de la mañana para determinar las ganancias diarias de peso vivo por etapas.

II.7 Diseños experimentales y análisis estadísticos

En todas las investigaciones los tratamientos experimentales se ordenaron según diseños totalmente aleatorizados, donde el análisis matemático para la comparación de las ganancias de peso vivo de los animales se efectuó mediante un modelo lineal de clasificación simple. En el caso de los pastos se utilizó el análisis de varianza con una vía de clasificación, donde las repeticiones lo constituyeron los muestreos mensuales y bimestrales efectuados en los diferentes cuartones de los sistemas estudiados. Las medias se compararon mediante la décima de Duncan (1955).

II.8 Experimentos realizados

1. Utilización del Banco de proteína y la Asociación de árboles con pastos en toda el área, como alternativas para la ceba de toretes Cebú.
2. Utilización del Banco de proteína y la Asociación de árboles con pastos en toda el área, como alternativa para la cría de hembras mestizas de reemplazo hasta su incorporación a la reproducción.
3. Asociación de árboles en toda el área de potreros para la ceba de toretes de diferentes genotipos.
4. Evaluación del sistema Asociación de árboles en toda el área de potreros para la cría de hembras de reemplazo de diferentes genotipos.

II.9 Procedimiento experimental

En los dos primeros experimentos se utilizó la misma área experimental, la cual se encontraba en explotación desde 1986 con L. leucocephala cv. Cunningham y pastos naturales (Hernández et al., 1986, 1987). La densidad de la arbórea, en el caso del sistema asociado, fue de una planta por cada 18 m² (555 plantas/ha) y de una planta por cada 8 m² en el Banco de proteína (1 250 plantas/ha).

Antes de iniciar las investigaciones se sustituyeron los pastos naturales por una asociación de leguminosas rastreras y guinea likoni, luego de una preparación mínima de las franjas de Paspalum notatum y Dichanthium caricosum que quedaron entre los surcos de leucaena. La siembra de la guinea y de las leguminosas se efectuó a mano, a finales de la época lluviosa, con una densidad de 5 kg/ha para la mezcla de las leguminosas N. wightii, Teramnus labialis, M. atropurpureum e Indigofera mucronata, y de 10 kg/ha para la guinea likoni.

El tratamiento control con guinea likoni del primer experimento y el 75 % del área de likoni perteneciente al sistema de Banco de Proteína, se sembraron luego de una preparación completa de la tierra, en la misma época y con la misma densidad que los demás tratamientos experimentales. Durante el período experimental estas áreas de gramíneas recibieron fertilización en las lluvias, a razón de 80 kg de N/ha/ano.

En función de las siembras efectuadas, el pasto predominante en todos los experimentos fue la guinea cv. Likoni, aunque se encontraron áreas con B. decumbens cv. Basilisk (brachiaria), P. maximum cv. Común y pastos naturales del complejo Dichanthium-Bothriocloa, especies adaptadas al lugar y utilizadas en experimentos anteriores.
Con respecto al manejo del pastoreo, en el primer experimento el 25 % del área con leucaena del sistema Banco de proteína no se pastoreó durante la época lluviosa, siguiendo la política de reservarlo para la época de escasas lluvias y, teniendo en cuenta, además, que la disponibilidad de la guinea en el 75 % del área restante era bastante alta. Esto motivó que la carga animal sobre esa área se incrementara hasta 3,3 animales/ha (0,98 UGM/ha). El periodo de ceba final coincidió con la época poco lluviosa y, en esa fase, se comenzó a pastar en días alternos el Banco de proteína. En los días señalados se abrían las puertas de los cuartones en horas de la mañana y los animales permanecían con libre acceso las 24 horas. En el segundo experimento, el área de Banco de proteína se pastoreó todo el tiempo, aunque de manera restringida, durante las horas de la mañana.

A cada cuarto de guinea ikoni (0,75 ha) de este sistema de producción le correspondía un cuarto de leucaena (0,25 ha), situado al final del primero y dividido por una cerca de púas con puerta. En la concesión de los demás experimentos se aprovecharon las áreas anteriormente descritas, con el objetivo de lograr un área asociada total de 12 ha, por lo que se hizo necesaria la siembra de la leucaena en los cuartones de guinea en monocultivo. Para esto se pastoreó a fondo las áreas seleccionadas y posteriormente se hizo una preparación mínima de la tierra, en franjas (rotura y dos pases de grada), a finales de la época poco lluviosa. La siembra se realizó en la época lluviosa, con una densidad de la leucaena de una planta por cada 18 m² (6 m entre hileras y 3 m entre plantas), y se comenzó a explotar cuando alcanzó una altura de 2 m como promedio.

En todos los experimentos se practicó la poda escalonada de las plantas de leucaena, en la época poco lluviosa y en función de la disponibilidad de los pastos acompañantes; de esta manera, coincidió generalmente con los meses de enero a abril, cuando los días de estancia se prolongaron y la oferta de pastos se redujo considerablemente. Se cortaban con machete las plantas de leucaena que sobrepasaban los 2,5 m de altura, con el fin de que los animales que pastaban en el cuarto pudieran consumir el follaje al cual no tenían acceso anteriormente por sobrepasar la altura de ramoneo. Este tipo de poda escalonada se planificó según el número de árboles por cuarto y el número de rotaciones que se previó para la seca, teniendo en cuenta, además, que los árboles que se cortaban en un año, no se cortaban en el otro, por lo que la poda individual de cada árbol se realizó cada dos años. De esta forma, en cada día de estancia se cortaba un número determinado de árboles, que propició que la mitad de los árboles fueran podados al término de cada experimento y que los animales siempre tuvieran acceso a follaje de ramoneo y poda, además de la sombra. Esta práctica se realizó a una altura de 150 cm y propició en cada rotación un vigoroso rebrote que los animales consumieron con avidez. En todos los experimentos se garantizó agua y sales minerales a voluntad a los animales, en corrales habilitados al efecto, próximas a los cuartones de pastoreo.

A todos los animales seleccionados en las empresas se les hicieron los análisis correspondientes (estipulados por el servicio veterinario estatal) antes de ser trasladados a la Estación “Indio Hatuey”, los cuales resultaron negativos. Al iniciar los experimentos se realizó una desparasitación general y, durante el transcurso de estos, se mantuvo la cura de los parásitos externos, mediante baños de inmersión mensualmente.

En el cuadro II.9.1 se exponen las principales características de las áreas experimentales utilizadas.

Cuadro II.9.1. Algunas características de las áreas experimentales

<table>
<thead>
<tr>
<th>Experimento y tratamiento</th>
<th>Área (ha)</th>
<th>Anim. (n)</th>
<th>Peso (kg)</th>
<th>Edad (meses)</th>
<th>Carga (a/ha)</th>
<th>Reposo LL</th>
<th>S</th>
<th>Estancia LL</th>
<th>S</th>
<th>Cuartones (No.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>12</td>
<td>30</td>
<td>147,7</td>
<td>12,5</td>
<td>2,5</td>
<td>21</td>
<td>27</td>
<td>7</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>Asociación</td>
<td>4</td>
<td>10</td>
<td>147,3</td>
<td>12,4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>B. proteína</td>
<td>4</td>
<td>10</td>
<td>147,5</td>
<td>12,6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Tradicional</td>
<td>4</td>
<td>10</td>
<td>148,4</td>
<td>12,5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>II</td>
<td>8</td>
<td>20</td>
<td>102,4</td>
<td>12,9</td>
<td>2,5</td>
<td>21</td>
<td>36</td>
<td>7</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>Asociación</td>
<td>4</td>
<td>10</td>
<td>103,2</td>
<td>13,4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>B. proteína</td>
<td>4</td>
<td>10</td>
<td>101,6</td>
<td>12,5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Asociación</td>
<td>12</td>
<td>38</td>
<td>116,2</td>
<td>12,0</td>
<td>3,16</td>
<td>36</td>
<td>45</td>
<td>4</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>Asociación</td>
<td>12</td>
<td>28</td>
<td>167,5</td>
<td>14,4</td>
<td>2,33</td>
<td>36</td>
<td>45</td>
<td>4</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>
Capítulo III. Parte experimental

III.1 Utilización del Banco de proteína y la Asociación de árboles con pastos en toda el área, como alternativas para la ceba de toretes Cebú.

III.1.1 Introducción

Varios autores han tratado de dar respuesta a la producción de carne basada en el pastoreo de gramíneas solas (Pereira et al., 1991) y gramíneas-leguminosas (Valdés et al., 1984). Estos últimos lograron mantener la persistencia de las leguminosas, las cuales se pastoreaban solamente en el período poco lluvioso, lo que implicó un incremento de la carga en el período lluvioso, con la consiguiente caída de las ganancias de peso vivo.

Hernández et al. (1986; 1987) y Castillo, Ruiz, Hernández y Díaz (2002) introdujeron la variante de introducir la leucaena en asociaciones y bancos de proteína para la mejora de los sistemas de crecimiento-ceba basados en pastos naturales, con lo que lograron la estabilidad del pastizal y se alcanzaron ganancias de peso vivo superiores a los 400 g/animal/día.

Teniendo en cuenta que en Cuba el rebaño de cría representa entre el 38-40 % de la población bovina del país, lo que indica su importancia en la producción de carne (Boza, Benítez, Ray y Ramírez, 1998), y que estos rebaños presentan una baja productividad debido a las malas prácticas de alimentación y manejo, se realizó la siguiente investigación, donde los pastos naturales se sustituyeron por una gramínea mejorada (P. maximum cv. Likoni), con los siguientes objetivos:

1. Demostrar las ventajas, desde el punto de vista productivo, de la ceba de machos Cebú cuando se incluye la leucaena y pastos cultivados en sistemas de Asociación en toda el área de pastoreo y/o en Bancos de Proteína.
2. Estudiar los indicadores productivos y de calidad del sistema pasto-árbol en las diferentes épocas del año.

III.1.2. Tratamientos

Se evaluaron dos períodos continuos de ceba (inicial y final), para lo cual se utilizaron 30 años Cebú-comercial con un peso vivo promedio de 147 kg. Estos animales se seleccionaron previamente en un hato de cría de la Empresa de Ceba “Colón”, donde se encontraban estabulados en un centro de acopio y consumían una dieta a base de paja de caña sin tratar y miel final de caña de azúcar. La selección se hizo en función de lograr un grupo de animales de similar tamaño y peso corporal, así como de un adecuado estado de salud.

Para la realización del experimento se distribuyeron aleatoriamente, a razón de 10 animales, en los siguientes tratamientos:

1. Asociación de L. leucocephala cv. Cunningham con P. maximum cv. Likoni (guinea likoni) y las leguminosas rastreras N. wightii (glycine), T. labialis (teramnus), M. atropurpureum (siratro) e I. mucronata (indigofera) en toda el área de pastoreo.
2. Banco de proteína de L. leucocephala cv. Cunningham, con guinea likoni y las leguminosas rastreras glycine, teramnus, siratro e indigofera en el 25 % del área + guinea likoni fertilizada con 80 kg de N/ha en el 75 % del área restante, y
3. Sistema tradicional de pastoreo con guinea likoni en toda el área, fertilizada con 80 kg de N/ha.

III.1.3. Resultados

El comportamiento del peso vivo de los toros y las ganancias diarias, por etapa, aparecen en el cuadro III.1.3.1; no se apreciaron diferencias significativas para estos indicadores en el período de ceba inicial (coincidente con las lluvias), aunque se destacaron las ganancias individuales por encima de 800 g en todos los tratamientos. Sin embargo, ya en la fase de ceba final (época poco lluviosa) las ganancias fueron la mitad de las obtenidas en el primer ciclo, con valores menores que 430 g diarios y diferencias significativas (P<0,05) para este indicador y el peso vivo final de la Asociación con respecto al resto de los tratamientos. Estas diferencias significativas también se presentaron en la ganancia diaria de peso vivo acumulada en el transcurso de todo el período de ceba.

La disponibilidad de pastos se presenta en el cuadro III.1.3.2. Se manifestó la tendencia a una mayor disponibilidad de gramíneas en los tratamientos de Banco de proteína y de likoni fertilizada, con respecto a la Asociación (P<0,05 en la ceba inicial y P<0,01 en la ceba final), aunque la disponibilidad de biomasa total siempre fue mayor en el sistema asociado, con valores superiores a los 12,5 kg de MS/100 kg de PV/día, en el período poco lluvioso. Altamente significativo fue el aporte de las leguminosas a la asociación en ambas épocas.
o ciclos de ceba, principalmente en la ceba final (periodo poco lluvioso), donde prácticamente se equiparó con la disponibilidad de gramíneas de esa etapa. Ese aporte de la leguminosa significó el 35,2 % y el 46,5 % de la biomasa total, para la ceba inicial y la final, respectivamente.

Cuadro III.1.3.1. Peso vivo (kg) y ganancia diaria por época y total acumulado (g).

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>PV inicial</th>
<th>Ceba inicial</th>
<th>Ganancia</th>
<th>PV inicial</th>
<th>Ceba final</th>
<th>Ganancia</th>
<th>Genancia acumulada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asociación</td>
<td>147,3</td>
<td>310</td>
<td>821</td>
<td>311</td>
<td>400,0ₐ</td>
<td>429ₐ</td>
<td>623ₐ</td>
</tr>
<tr>
<td>B. de proteína</td>
<td>147,5</td>
<td>308</td>
<td>810</td>
<td>310</td>
<td>372,₅ᵣ</td>
<td>304ᵣ</td>
<td>555ᵣ</td>
</tr>
<tr>
<td>Likoni</td>
<td>148,4</td>
<td>311</td>
<td>821</td>
<td>311</td>
<td>366,₅ᵦ</td>
<td>268ᵦ</td>
<td>538ᵦ</td>
</tr>
<tr>
<td>ES ±</td>
<td>3,1</td>
<td>6,0</td>
<td>19,9</td>
<td>6,0</td>
<td>7,₄</td>
<td>13,₁</td>
<td>11,₂</td>
</tr>
</tbody>
</table>

a, b Valores con superíndices no comunes en la vertical difieren a P<0,05 (Duncan, 1955)

Cuadro III.1.3.2. Disponibilidad (kg MS/100 kg PV/día) total de gramíneas y leguminosas.

<table>
<thead>
<tr>
<th>Tratamientos</th>
<th>Ceba inicial (lluvia)</th>
<th>Disponibilidad</th>
<th>Ceba final (seca)</th>
<th>Disponibilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Gramíneas</td>
<td>Leguminosas</td>
<td>Total</td>
</tr>
<tr>
<td>Asociación</td>
<td>20,7ₐ</td>
<td>13,₄ᵦ</td>
<td>7,₃(0,95)</td>
<td>12,₉ᵦ</td>
</tr>
<tr>
<td>B. de proteína</td>
<td>15,₇ₐ</td>
<td>15,₇ᵦ</td>
<td>No se pastó</td>
<td>11,2ᵦ</td>
</tr>
<tr>
<td>Likoni</td>
<td>16,₆ᵦ</td>
<td>16,₆ᵦ</td>
<td>-</td>
<td>10,₁ᵦ</td>
</tr>
<tr>
<td>ES ±</td>
<td>0,₇ᵦ</td>
<td>0,₅ᵦ</td>
<td>-</td>
<td>0,₅ᵦ</td>
</tr>
</tbody>
</table>

a, b Valores con superíndices no comunes en la vertical difieren a P<0,05 (Duncan, 1955)

La composición química de los pastos en la ceba inicial (Cuadro III.1.3.3) mostró un balance significativo (P<0,01) en el contenido de proteína bruta a favor de la asociación, único tratamiento donde los animales tuvieron acceso al follaje de los árboles mediante el ramoneo y al pastoreo de las leguminosas rastreras, ya que el Banco de proteína no se pastó en esa etapa. En esta época lluviosa, en los tratamientos de Banco de proteína y likoni fertilizada, los tenores de PB de la guinea likoni no asociada a los árboles fueron moderados (8,0-8,5 %), con valores típicos para la dosis de 80 kg de N/ha.

En la época poco lluviosa, en la cual se desarrolló la ceba final, se observaron diferencias altamente significativas (P<0,001) en el contenido de PB a favor de los tratamientos con leguminosas respecto al testigo likoni, con valores típicos para la dosis de 80 kg de N/ha.

En la época poco lluviosa, en la cual se desarrolló la ceba final, se observaron diferencias significativas en el contenido de fibra bruta, con valores por debajo de 27 % en los sistemas silvopastoriles. En relación con el calcio y el fósforo, no se observaron diferencias significativas en ninguna de las dos épocas, aunque en la poco lluviosa resultó un poco elevado el Ca y bajo el P.

En la figura III.1.3.1 se muestra la dinámica de la composición botánica de los diferentes sistemas durante todo el período experimental. Se observó una estabilidad en la población de la guinea likoni y de las otras gramíneas, en los tratamientos de Asociación y likoni fertilizada; no ocurrió lo mismo en el Banco de Proteína, donde la guinea se redujo en 17,2 puntos porcentuales, con el consiguiente aumento de la despoblación y el advenimiento de nuevas gramíneas típicas del lugar. En la dinámica particular de las leguminosas herbáceas se observó que la población tendió a disminuir ligeramente en todos los tratamientos, especialmente la glycine y el siratro, especies predominantes en la mezcla. No ocurrió lo mismo con la leucaena, que aunque no se muestra en la figura, mantuvo su población prácticamente estable, ya que solo se redujo en un 0,2 % en el sistema asociado y en un 0,32 % en el área de Banco de proteína.

Cuadro III.1.3.3. Composición química por tratamientos en ambos ciclos de ceba (%).

<table>
<thead>
<tr>
<th>Tratamientos</th>
<th>Proteína Bruta</th>
<th>Fibra Bruta</th>
<th>Calcio</th>
<th>Fósforo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C. I.ₐ</td>
<td>C. F.ₐ</td>
<td>C. I.ₐ</td>
<td>C. F.</td>
</tr>
<tr>
<td>Asociación</td>
<td>15,₄₀</td>
<td>17,₉₀</td>
<td>30,₀ₐ</td>
<td>26,₁ₐ</td>
</tr>
<tr>
<td>Banco de proteína</td>
<td>8,₀₂ₜ</td>
<td>16,₀₀ₜ</td>
<td>3₅,₂ₜ</td>
<td>₂₆,₉ₜ</td>
</tr>
<tr>
<td>Likoni</td>
<td>8,₅₄ₜ</td>
<td>7₉,₀₉ₜ</td>
<td>₃₃,₉ₚ</td>
<td>₃₃,₁ₜ</td>
</tr>
<tr>
<td>ES ±</td>
<td>₀,₆₃ₚ</td>
<td>₀,₄₆ₚ</td>
<td>₀,₄ₚ</td>
<td>₀,₈ₚ</td>
</tr>
</tbody>
</table>

a, b Valores con superíndices no comunes en la vertical difieren a P<0,05 (Duncan, 1955)

*P<0,05; **P<0,01; *** P<0,001 C.I. Ceba inicial C.F. Ceba final
Fig. III.1.3.2. Evolución de la composición botánica (%).
III.2. Utilización del Banco de proteína y/o la Asociación de árboles con pastos en toda el área, como alternativa para la cría de hembras mestizas de reemplazo hasta su incorporación a la reproducción

III.2.1. Introducción

Es imprescindible que las hembras en crecimiento se desarrollen a un ritmo adecuado desde su nacimiento hasta el parto, lo que garantiza un reemplazo adecuado del rebaño lechero. Sin embargo, tradicionalmente esta categoría animal ha sido relegada a un segundo plano, en cuanto a alimentación y manejo se refiere. En Cuba, en condiciones de producción, es típico encontrar bajos pesos por edad (1-300 g/animal/día), una elevada edad de incorporación a la reproducción (28 meses), primeros partos a los 41 meses y un alto porcentaje (49 %) de novillas sin incorporar por bajo peso (Mejías, Franco y Barceló, 2000), lo que está asociado a la escasez de alimentos, principalmente en el período poco lluvioso.

Sin embargo, los resultados en cuanto a las ganancias diarias acumuladas, obtenidos en la investigación anterior (donde no se supplementó a los machos en esa época), y los trabajos desarrollados con animales de carne (Castillo et al., 1992) y hembras en desarrollo (Zarragoitia et al., 1992), demostraron la posibilidad de utilizar las leguminosas arbóreas en sistemas de banco de proteína y asociaciones en toda el área, con resultados satisfactorios en cuanto a la ganancia de peso y la persistencia del pastizal. Esto motivó el diseño de nuevas investigaciones, encaminadas a desarrollar tecnologías de bajos insumos externos, que propicien un adecuado desarrollo de la hembra mestiza de reemplazo en los momentos actuales en que la masa ganadera se encuentra deprimida.

Esta investigación se realizó en la misma área que el experimento anterior y se trazó los siguientes objetivos:

1. Evaluar las posibilidades que presentan los sistemas de Banco de proteína y/o Asociación en toda el área para la cría de hembras mestizas en desarrollo, sin suplementación energético-proteica, desde su fase de añojas hasta su incorporación a la reproducción.
2. Obtener ganancias diarias de peso vivo que les permitan a las añojas en crecimiento alcanzar un peso/edad cercano a los 300 kg, al momento de su incorporación a la reproducción.
3. Estudiar los indicadores productivos y de calidad de los pastos y las arbóreas, involucrados en los sistemas evaluados.

III.2.2. Tratamientos

Se utilizaron 20 añojas del genotipo 5/8 H x 3/8 C, las cuales comenzaron el experimento con sólo 100 kg de peso vivo a la edad de 12-13 meses, que es un peso/edad representativo de los sistemas de producción actuales a escala comercial. Estas se seleccionaron de una unidad de desarrollo, perteneciente a un rebaño comercial de la Empresa Lechera “General Gusev”, donde se encontraban pastoreando, de forma continua, en áreas de pastos naturales, con una suplementación a base de cascarilla de cítricos fundamentalmente. Estas se distribuyeron siguiendo un diseño totalmente aleatorizado en dos tratamientos:

1. Asociación de L. leucocephala cv. Cunningham con P. maximum cv. Likoni (guinea likoni) y las leguminosas rastreras N. wightii (glycine), T. labialis (teramnus), M. atropurpureum (siratro) e I. mucronata (indigofera) en toda el área de pastoreo.
2. Banco de proteína de L. leucocephala cv. Cunningham, con guinea likoni y las leguminosas rastreras glycine, teramnus, siratro e indigofera en el 25 % del área + guinea likoni fertilizada con 80 kg de N/ha en el 75 % del área restante.

III.2.3. Resultados

En el cuadro III.2.3.1. se muestra la composición química de los alimentos ofertados. En sentido general, no existieron diferencias significativas entre los tratamientos para ninguno de los nutrimentos de los diferentes componentes del pastizal, lo que sí se evidenció entre épocas, por lo que se detalla específicamente este fenómeno.

En la mezcla de las leguminosas herbáceas se encontró diferencias significativas para el contenido de PB en las diferentes épocas del año y los mejores valores se presentaron en la época poco lluviosa (más de 13 %). La guinea en combinación con otras gramíneas, en ambos tratamientos, mantuvo tenores de PB superiores a 10 % en la época poco lluviosa, que difirieron de las lluvias (P<0,05), donde los contenidos de este nutrien
variaron entre 8,77 y 9,61 %. Los contenidos de fibra tendieron a ser mayores en la época lluviosa en el caso de los pastos (P<0,001); mientras que en las leguminosas este fenómeno ocurrió en la época poco lluviosa.

En cuanto a la leucaena, sus contenidos de PB estuvieron por encima de 22 %, tanto en el material de ramoneo como en el podado; mientras que la fibra alcanzó valores de hasta 22 % en el material ramoneado; el Ca y P se mantuvieron dentro de los rangos señalados para esta planta.

Cuadro III.2.3.1 Composición química de los alimentos (%).

<table>
<thead>
<tr>
<th>Alimentos</th>
<th>Fibras Brutas</th>
<th>Proteínas Brutas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lluvia</td>
<td>Seca</td>
</tr>
<tr>
<td>Pastos</td>
<td>35,1</td>
<td>32,2</td>
</tr>
<tr>
<td>Leg. herb.</td>
<td>29,1</td>
<td>31,0</td>
</tr>
<tr>
<td>Calendula</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fósforo</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valores desiguales en la horizontal diferían a P<0,05 (Duncan, 1955)
*P<0,05; **P<0,01; ***P<0,001

Al observar la dinámica de la composición botánica (Fig. III.2.3.1) se denota una reducción de la guineá likoni en el tratamiento de Banco de Proteína, a la vez que se incrementaron las leguminosas herbáceas y otras gramíneas, tanto cultivadas como naturalizadas (P. maximum cv. Común, B. decumbens, D. caricosum, D. annulatum y D. aristatum). La despoblación también aumentó hacia el final del período experimental y abarcó más del 10 % del área en este sistema. En el sistema asociado apenas se evidenciaron cambios, lo que demostró la estabilidad de este tratamiento durante todo el período evaluado. Con respecto a la leucaena, esta mantuvo su población prácticamente estable, ya que solo se redujo en un 1 % el número de plantas por tratamiento.

En el cuadro III.2.3.2. se expone el comportamiento de la disponibilidad de pastos en ambas épocas del año. Como se observa, este indicador fue alto para el caso de la gramínea en ambos tratamientos y épocas del año, lo que permitió incluso que en la época de pocas lluvias las añojas del Banco tuvieran una oferta total superior a los 11 kg de MS/100 kg de PV/día.
En el caso de las leguminosas herbáceas la disponibilidad no fue muy alta, sin diferir entre tratamientos y con valores que no rebasaron el kg de MS/100 kg de PV/día en el periodo poco lluvioso. En cuanto a la disponibilidad consumible de la leucaena se encontraron diferencias significativas entre tratamientos, tanto en las lluvias (coincidente con la etapa de ramoneo) como en la época poco lluviosa (poda), con los mayores valores en el sistema de la Asociación (2,56 y 0,447 kg de MS/100 kg de PV/día, respectivamente).

Cuadro III.2.3.2. Disponibilidad de pastos (kg de MS/100 kg de PV/día).

<table>
<thead>
<tr>
<th>Tratamientos</th>
<th>Gramíneas</th>
<th>Leguminosas herbáceas</th>
<th>Leucaena ramoneo</th>
<th>Leucaena poda</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lluvia</td>
<td>Seca</td>
<td>Lluvia</td>
<td>Seca</td>
<td>Lluvia</td>
</tr>
<tr>
<td>Asociación</td>
<td>26,10</td>
<td>13,5</td>
<td>1,54</td>
<td>0,55</td>
<td>2,560</td>
</tr>
<tr>
<td>Banco de prot.</td>
<td>22,19</td>
<td>10,3</td>
<td>1,60</td>
<td>0,62</td>
<td>0,947</td>
</tr>
<tr>
<td></td>
<td>5,27</td>
<td>3,2</td>
<td>0,14</td>
<td>0,13</td>
<td>0,332**</td>
</tr>
</tbody>
</table>

Valores desiguales en la vertical difieren a P<0,05 (Duncan, 1955)
*P<0,05; **P<0,01

En el cuadro III.2.3.3. se observa el comportamiento animal hasta su incorporación a la reproducción, tomando el criterio de que las añojas se incorporaban con un peso de 295-300 kg.

Cuadro III.2.3.3. Comportamiento de añojas de reemplazo hasta su incorporación a la reproducción.

<table>
<thead>
<tr>
<th>Indicadores</th>
<th>Asociación</th>
<th>Banco de proteína</th>
<th>ES±</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso vivo inicial (kg)</td>
<td>103,2</td>
<td>101,6</td>
<td>5,6</td>
</tr>
<tr>
<td>Edad (meses)</td>
<td>13,4</td>
<td>12,5</td>
<td>0,3</td>
</tr>
<tr>
<td>Peso vivo final (kg)</td>
<td>310,4</td>
<td>292,3</td>
<td>5,2**</td>
</tr>
<tr>
<td>Edad (meses)</td>
<td>27,4</td>
<td>26,5</td>
<td>0,3</td>
</tr>
<tr>
<td>Ganancia en la lluvia (g/día)</td>
<td>577,0</td>
<td>576,5</td>
<td>13,9</td>
</tr>
<tr>
<td>Ganancia en la seca (g/día)</td>
<td>409,6</td>
<td>331,4</td>
<td>13,9***</td>
</tr>
<tr>
<td>Ganancia acumulada (g/día)</td>
<td>493,3</td>
<td>454,1</td>
<td>9,8***</td>
</tr>
</tbody>
</table>

Valores desiguales en la horizontal difieren a P<0,05 (Duncan, 1955) **P<0,01, *** P<0,001

Los pesos promedio finales de los animales de la Asociación y del Banco de proteína difirieron estadísticamente (P<0,01), con valores en el primer tratamiento que superaron los 310 kg; esto no fue posible en el sistema de Banco, el cual no rebasó los 300 kg de PV.

Las ganancias diarias acumuladas estuvieron por encima de los 450 g en ambos sistemas, con diferencias altamente significativas entre tratamientos, favorables al sistema asociado. La edad a la incorporación fue superior a los 25 meses en ambos tratamientos, lo que estuvo asociado al bajo peso que presentaron los animales al inicio del experimento.

III.3. Asociación de árboles en toda el área de potreros para la ceba de toretes de diferentes genotipos raciales

III.3.1. Introducción

Los resultados de los experimentos anteriores demostraron que en el Banco de proteína se obtienen adecuadas ganancias de peso vivo; pero se comprobó, a su vez, que su manejo es más complejo que el de la Asociación, motivado por el reducido número de cuartones empleado, lo que influyó en el deterioro de la composición botánica del pastizal, a pesar del uso de fertilizantes en el área sin árboles. En adición a esto, los resultados productivos de los animales en el sistema de Asociación en toda el área, siempre superaron estadísticamente a los del Banco y se evidenció una mejor estabilidad en cuanto a la producción y persistencia del pasto base.

Por otra parte, se conoce, que los bovinos de la raza Holstein y sus cruces con ganado del tipo Brahman, presentan altas potencialidades de crecimiento cuando se someten a óptimas condiciones de alimentación y manejo (López y Mejías, 1994). En este sentido, Anon (2001) y Alberti, Sañudo, Lahoz, Jaime y Tena (1988)
informaron ganancias de más de 1 kg diario cuando cebaron terneros mestizos Holstein x Cebú, en condiciones de estabulación, con forrajes de calidad y suplementados con diferentes proporciones de pienso.

Teniendo en cuenta estos antecedentes y conociendo la problemática de los machos mestizos de corte lechero en nuestro país, los cuales arriban a la ceba en grandes cantidades y deben ser llevados, en su mayoría, a las condiciones existentes para el ganado de carne en pastoreo, lo que provoca pesos al sacrificio de alrededor de 250 kg, con más de 26 meses de edad (Castillo, 1996), las investigaciones continuaron con los siguientes objetivos:

1. Determinar la potencialidad de la Asociación de árboles en toda el área para el engorde de genotipos de procedencia lechera, los cuales tradicionalmente se han cebado de forma intensiva o en pastoreo con suplementación energético-proteica.

2. Estudiar los indicadores productivos y de calidad de los pastos asociados con leguminosas arbóreas ya establecidas, así como del componente arbóreo.

III.2. Tratamientos

Se evaluaron dos períodos continuos de ceba (inicial y final), en los cuales se compararon las respuestas productivas de tres genotipos en pastoreo, mediante un diseño totalmente aleatorizado.

Para esto se utilizaron 38 añojos con un peso vivo promedio de 118 kg, los cuales se dividieron en tres grupos, de acuerdo con el genotipo al que pertenecían. De este modo, se evaluó el comportamiento de 12 toretes Cebú comercial, 13 F₁ (1/2 Holstein x 1/2 Cebú) y 13 del genotipo (5/8 Holstein x 3/8 Cebú), los cuales se mantuvieron pastando juntos como un solo grupo en los diferentes potreros del sistema asociado, durante todo el período experimental, con una carga inicial sobre el sistema de 3,8 animales/ha (0,9 UGM/ha).

Los animales de corte lechero provenían de la Empresa “Genética de Matanzas”, mientras que los del genotipo Cebú se seleccionaron de nuevo en la Empresa de Ceba “Colón”. Todos eran animales de tipo comercial, los cuales estaban destinados para su traslado a áreas de ceba. El criterio de selección fue el mismo que en el primer experimento, en función de lograr un grupo de animales homogéneo en cuanto al tamaño y el peso corporal, así como de un adecuado estado de salud.

III.3.3. Resultados

La dinámica de la disponibilidad de pastos se muestra en el cuadro III.3.3.1. Se observaron diferencias significativas (P<0,01) en los rendimientos de las gramíneas a favor de las dos épocas lluviosas, coincidiendo la primera con la etapa de ceba inicial, donde las precipitaciones ocurridas (1 176 mm) representaron el 76 % de la lluvia total de ese año.

También se evidenció una mayor disponibilidad de leucaena en las épocas lluviosas, principalmente en la primera, lo que coincidió con el inicio del experimento, donde el 48 % de los árboles se explotaban por primera vez, luego de su establecimiento. En el periodo poco lluvioso la oferta diaria de leucaena por ramoneo fue menor (0,328 kg de MS/100 kg de PV/día), debido a que los animales eran aún relativamente pequeños y las posibilidades de ramoneo estaban limitadas por la altura de las plantas (2,5-3,5 m); esto se compensó con la poda escalonada, la que propició ofertas de más de 1,8 kg de MS/100 kg de PV/día en esa época. En la segunda época lluviosa, el rebrote propiciado por la poda de los árboles iniciada en febrero permitió a los animales disponer de alrededor de 0,722 kg de MS/100 kg de PV/día, lo que demostró las ventajas de esta práctica dentro del manejo del sistema de producción.

Esta poda permitió incrementar también la oferta de follaje total en la época poco lluviosa hasta 9,24 kg de MS/100 kg de PV/día, ya que a partir del corte de los árboles y el ramoneo, la disponibilidad de arbóreas por animal alcanzó los 2,16 kg de MS/100 kg de PV/día.

En sentido general, los rendimientos totales de biomasa en el período poco lluvioso fueron menores (P<0,01) que los obtenidos en la lluvia de la ceba inicial y en los últimos meses de la final, lo que estuvo influenciado por las bajas precipitaciones de esa época.

Aquí se destaca el contenido de proteína bruta de la leucaena en ambas etapas de ceba, con tenores mayores que 26 % y sin diferencias entre ciclos. El pasto acompañante, mayoritariamente compuesto por guinea likoni, presentó mejores valores de FB y PB en la ceba final (P<0,001), tendencia que se mantuvo para los nutrientes Ca y P, lo que denotó su mejor calidad en esa etapa.

La disponibilidad total de biomasa encontrada, unida a su calidad nutritiva, hace que el sistema estudiado sea viable para desarrollar la ceba de machos de cualquier tipo racial, lo cual se evidencia en los datos del cuadro III.3.3.3.
Cuadro III.3.3.1. Dinámica de la disponibilidad de pastos (kg de MS/100 kg de PV/día).

<table>
<thead>
<tr>
<th>Disponibilidad de alimentos</th>
<th>Ceba inicial</th>
<th>Ceba final</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lluvia</td>
<td>Seca</td>
</tr>
<tr>
<td>Gramíneas</td>
<td>18,15</td>
<td>7,08</td>
</tr>
<tr>
<td>Leucaena ramoneo</td>
<td>1,670a</td>
<td>0,328c</td>
</tr>
<tr>
<td>Leucaena poda</td>
<td>- 1,83</td>
<td>-</td>
</tr>
<tr>
<td>Disponibilidad total</td>
<td>19,82c</td>
<td>9,24c</td>
</tr>
</tbody>
</table>

a, b, c Valores con superíndices en la horizontal no comunes difieren a P<0,05 (Duncan, 1955)
**P<0,01

En el cuadro III.3.3.2. se muestra la composición química de los alimentos ofertados.

Cuadro III.3.3.2. Composición química de los alimentos (%).

<table>
<thead>
<tr>
<th>Alimentos</th>
<th>Fibra Bruta</th>
<th>Proteína Bruta</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ceba inicial</td>
<td>Ceba final</td>
</tr>
<tr>
<td>Gramíneas</td>
<td>36,37</td>
<td>32,74</td>
</tr>
<tr>
<td>Leucaena ramoneo</td>
<td>20,70</td>
<td>21,06</td>
</tr>
<tr>
<td>Leucaena poda</td>
<td>- 1,84</td>
<td>-</td>
</tr>
</tbody>
</table>

Valores desiguales en la horizontal difieren a P<0,05 (Duncan, 1955)
***P<0,001

Cuadro III.3.3.3. Comportamiento productivo de los animales en las diferentes épocas.

<table>
<thead>
<tr>
<th>Genotipo</th>
<th>Peso vivo inicial (kg)</th>
<th>Peso vivo final (kg)</th>
<th>Ganancia diaria (g)</th>
<th>Edad (meses)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ceba inicial</td>
<td>Época lluviosa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cebú comercial</td>
<td>111,5</td>
<td>273,4a</td>
<td>899a</td>
<td></td>
</tr>
<tr>
<td>F₁ (½ H x ½ Cebú)</td>
<td>120,0</td>
<td>235,1b</td>
<td>639b</td>
<td></td>
</tr>
<tr>
<td>(5/8 H x 3/8 Cebú)</td>
<td>117,1</td>
<td>233,0b</td>
<td>643b</td>
<td></td>
</tr>
<tr>
<td>ES±</td>
<td>3,1</td>
<td>8,4***</td>
<td>29,7***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ceba final</td>
<td>Época poco lluviosa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cebú comercial</td>
<td>273,0a</td>
<td>315,5a</td>
<td>236a</td>
<td>12-18</td>
</tr>
<tr>
<td>F₁ (½ H x ½ Cebú)</td>
<td>235,1b</td>
<td>283,5b</td>
<td>268a</td>
<td></td>
</tr>
<tr>
<td>(5/8 H x 3/8 Cebú)</td>
<td>233,0b</td>
<td>264,8c</td>
<td>176b</td>
<td></td>
</tr>
<tr>
<td>ES±</td>
<td>8,4***</td>
<td>5,3***</td>
<td>16,4***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ceba final</td>
<td>Época lluviosa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cebú comercial</td>
<td>315,5a</td>
<td>413,7a</td>
<td>785</td>
<td></td>
</tr>
<tr>
<td>F₁ (½ H x ½ Cebú)</td>
<td>283,5b</td>
<td>376,3b</td>
<td>742</td>
<td></td>
</tr>
<tr>
<td>(5/8 H x 3/8 Cebú)</td>
<td>264,8c</td>
<td>357,1c</td>
<td>738</td>
<td>24-28</td>
</tr>
<tr>
<td>ES±</td>
<td>5,3***</td>
<td>9,9*</td>
<td>16,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Promedio acumulado en la cea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cebú comercial</td>
<td>111,5</td>
<td>413,7a</td>
<td>621,8a</td>
<td>16 meses</td>
</tr>
<tr>
<td>F₁ (½ H x ½ Cebú)</td>
<td>120,0</td>
<td>376,3b</td>
<td>525,6b</td>
<td></td>
</tr>
<tr>
<td>(5/8 H x 3/8 Cebú)</td>
<td>117,1</td>
<td>357,1c</td>
<td>491,6b</td>
<td></td>
</tr>
<tr>
<td>ES±</td>
<td>3,1</td>
<td>9,9*</td>
<td>11,5*</td>
<td></td>
</tr>
</tbody>
</table>

a, b Valores con superíndices no comunes en la vertical difieren a P<0,05 (Duncan, 1955)
* P<0,05; **P<0,01; ***P<0,001

31
No hubo pérdidas de peso vivo para ningún genotipo, incluso en la época de seca en que las ganancias diarias no fueron altas, pero se mantuvieron por encima de 175 g/animal/día en el ganado más fino y de 230 g en el resto.

En la ceba inicial se evidenciaron mejores ganancias de los toretes Cebú sobre los otros genotipos (899 vs 639 y 643 g/animal/día; P<0,001), lo que propició un mejor peso final (413,7 kg) y una mejor ganancia promedio acumulada al término de la investigación. Sin embargo, a partir de ese momento no existieron diferencias significativas entre los genotipos Cebú y F₁, en cuanto a las ganancias de peso vivo, con resultados de más de 740 g diarios en la segunda época lluviosa, lo que determinó pesos finales superiores a los 375 kg.

Por su parte, los animales del genotipo 5/8 H x 3/8 C fueron los de peor rendimiento en la época de seca, pero en los últimos meses de la ceba final (coincidente con la época lluviosa) evidenciaron ganancias similares al resto del grupo, lo que provocó que terminaran el ciclo de ceba con promedios superiores a los 490 g diarios.

La evolución de la composición botánica se presenta en la figura III.3.2.2. El área ocupada por la guinea likoni se mantuvo casi inalterable durante todo el experimento, con la excepción de un cuartón, donde en la época lluviosa las altas precipitaciones provocaron prolongados periodos de encharcamiento, surgiendo manchas de angleton que desplazaron a la guinea. La brachiaria se adaptó mejor a estas condiciones y solo disminuyó su población en la primera época lluviosa, probablemente afectada por la combinación del pastoreo y la sombra que proyectaban los árboles al inicio del experimento. Se evidenció un aumento de los pastos naturales, característicos de esta localidad y mejor adaptados, mientras que la población de leucaena se mantuvo inalterable, incluso después de la poda.

![Evolucion de la composicion botanica](image.png)

Fig. III.3.2.2. Evolución de la composición botánica durante el período experimental (%).

III.4. Evaluación del sistema Asociación de árboles en toda el área de potreros para la cria de hembras de reemplazo de diferentes genotipos

III.4.1. Introducción

La política genética del país en los años que antecedieron al Período Especial se encaminó a la mejora del potencial de producción del rebaño nacional, de corte cárnico o doble propósito en su mayoría, mediante el cruce con animales de razas europeas, lo que propició considerables aumentos en la producción de leche durante la década de los años 80 y que, en la actualidad, se cuente con rebaños puros de Holstein y mestizos de genotipos F₁, 5/8 H x 3/8 C y 3/4 H x 1/4, estos dos últimos como intermediarios de la formación de las razas Siboney y Mambi de Cuba, respectivamente.

En el caso de las hembras en desarrollo, la conveniencia de que estas crezcan y se desarrollen a un ritmo adecuado desde el nacimiento hasta el parto, es un factor importante en la economía de las empresas pecuarias y un tema debatido por diferentes autores (Corvisón, 2000; Mejías et al., 2000).

Sin embargo, los sistemas de producción pecuarios para la cria de estas, en los últimos años, han derivado hacia sistemas extensivos de producción en áreas marginales de pastoreo, con poco manejo zootécnico o ninguno. Tales tecnologías han mostrado una alta insostenibilidad debido a la baja producción que se obtiene,
lo que se hace particularmente importante en las condiciones actuales que vive nuestro país desde el punto de vista económico.

Es en este contexto cobra una alta relevancia desarrollar nuevas propuestas de producción agropecuaria, como lo son los sistemas silvopastoriles de Asociación de árboles con pastos, ya estudiados anteriormente, en los que los resultados productivos, si no son espectaculares, al menos se logran con una sustitución alta de insumos externos que son prohibitivos en la actualidad.

Es por eso que esta investigación tuvo como objetivos:

1. Determinar las posibilidades productivas del sistema Asociación en toda el área de pastoreo para la crianza de hembras en desarrollo, de genotipos característicos de los rebaños comerciales cubanos de la actualidad.
2. Lograr ganancias de peso vivo que permitan a las ovejas en crecimiento, alcanzar pesos y edades adecuadas al momento de su incorporación a la reproducción.
3. Estudiar la evolución del pastizal asociado, así como sus indicadores productivos y de calidad.

III.4.2. Tratamientos

Se utilizaron dos grupos de animales (14 ovejas por grupo) de diferentes genotipos, los cuales pastaron juntos en el mismo sistema de producción, con el objetivo de minimizar al máximo las diferencias en la calidad del pasto cosechado (Ferrer y Petit, 1995), según un diseño totalmente aleatorizado, donde los genotipos fueron 5/8 Holstein x 3/8 Cebú y F₁ (1/2 Holstein x 1/2 Cebú).

Los animales fueron seleccionados en la Empresa “Genética de Matanzas”, de unidades de desarrollo, donde el sistema de alimentación era a base de pastoreo restringido de mezclas de pastos naturales con estrella, concentrado comercial y forraje de caña con urea a voluntad.

III.4.3. Resultados

Los resultados de la disponibilidad de los pastos y el material arbóreo se presentan en el cuadro III.4.3.1. El sistema mantuvo altas ofertas diarias de forraje total (16,64 kg de MS/100 kg de PV/día como promedio en todo el ciclo de evaluación), lo que permitió a los animales disponer de un material abundante para la selección en pastoreo, inclusive en la época poco lluviosa, donde la oferta diaria de pastos fue de 13,85 kg de MS/100 kg de PV/día (28 kg de MS/animal/día), aunque difirió de la oferta en la época lluviosa (18,41 kg). Significativo fue el aporte de la leucaena también en la seca, con valores de más de 0,730 kg de MS de follaje proveído del ramoneo y la poda, la cual difirió significativamente (P<0,01) de la oferta de la época lluviosa.

Cuadro III.4.3.1. Disponibilidad promedio de pastos y arbóreas (kg de MS/100 kg de PV/día) por época.

<table>
<thead>
<tr>
<th>Indicadores</th>
<th>Poco lluvioso</th>
<th>Período lluvioso (MS)</th>
<th>Promedio del ciclo</th>
<th>ES ±</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oferta diaria total</td>
<td>14,58</td>
<td>18,70</td>
<td>16,64</td>
<td>0,27**</td>
</tr>
<tr>
<td>Oferta diaria de pastos</td>
<td>13,85</td>
<td>18,41</td>
<td>15,99</td>
<td>0,37**</td>
</tr>
<tr>
<td>Oferta de arbóreas</td>
<td>0,736</td>
<td>0,293</td>
<td>0,336</td>
<td>0,05**</td>
</tr>
<tr>
<td>Por ramoneo</td>
<td>0,113</td>
<td>0,293</td>
<td>0,203</td>
<td>0,05***</td>
</tr>
<tr>
<td>Por poda</td>
<td>0,623</td>
<td>-</td>
<td>0,311</td>
<td>-</td>
</tr>
</tbody>
</table>

Valores con cifras desiguales en la horizontal difieren significativamente a P<0,05 (Duncan, 1955)

** P<0,05 *** P<0,01

Los datos del cuadro III.4.3.2 muestran la composición química del material ofertado. Como en los experimentos anteriores, se destaca el contenido proteico de la leucaena, con valores superiores a 22,7 %, tanto en las lluvias como en el periodo poco lluvioso. También el contenido de proteína bruta de los pastos se puede considerar aceptable, con una tendencia a subir en el periodo de menos precipitaciones (10,19 %). Una situación bien diferente presentaron los contenidos de minerales, ya que hubo un bajo contenido de Ca en la leucaena (por debajo de 1,65 %, tanto en el follaje ramoneado como en el podado para ambas épocas) y valores de P cercanos a los críticos en las gramíneas acompañantes.

La composición botánica del pastizal, en sentido general, se mantuvo estable, aunque con una ligera tendencia a la disminución de la guineá likoni y el aumento del área cubierta por angletons y otros pastos cultivados y naturales. Durante el desarrollo de la investigación se evidenció un incremento del área cubierta total, ya que al inicio se comenzó con un 12 % de despoblación y al finalizar se contaba con el 94 % del área.
cubierta con diferentes pastos, incidiendo en esto los pastos del tipo rastrero. La población de leucaena no disminuyó, aunque en algunos cuartones, que en la época lluviosa se mantuvieron encharcados por un tiempo, se detectó un debilitamiento de los árboles, reflejado en un crecimiento más lento y una ramificación rala y menos copiosa. La dinámica de la composición botánica se muestra en la figura III.4.3.1.

Cuadro III.4.3.2. Composición química de los alimentos ofertados en el sistema (%).

<table>
<thead>
<tr>
<th>Indicadores</th>
<th>Gramíneas Lluvias</th>
<th>P. seco</th>
<th>Leucaena ramoneo Lluvias</th>
<th>P. seco</th>
<th>Leucaena poda Lluvias</th>
<th>P. seco</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proteína Bruta</td>
<td>9,25</td>
<td>10,19</td>
<td>24,21</td>
<td>22,76</td>
<td>-</td>
<td>22,98</td>
</tr>
<tr>
<td>ES±</td>
<td>0,552</td>
<td></td>
<td>0,291*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibra Bruta</td>
<td>33,4</td>
<td>31,14</td>
<td>22,6</td>
<td>21,7</td>
<td>-</td>
<td>20,97</td>
</tr>
<tr>
<td>ES±</td>
<td>0,381**</td>
<td></td>
<td>0,513</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcio</td>
<td>0,73</td>
<td>0,78</td>
<td>1,45</td>
<td>1,32</td>
<td>-</td>
<td>1,61</td>
</tr>
<tr>
<td>ES±</td>
<td>0,014*</td>
<td></td>
<td>5,41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fósforo</td>
<td>0,25</td>
<td>0,23</td>
<td>0,16</td>
<td>0,15</td>
<td>-</td>
<td>0,18</td>
</tr>
<tr>
<td>ES±</td>
<td>1,00</td>
<td>9,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valores con cifras desiguales en la horizontal difieren significativamente a P<0,05 (Duncan, 1955)
* P<0,05 ** P<0,01

Fig. III.4.3.1. Dinámica de la composición botánica del pastizal (%).

El comportamiento productivo de las hembras de reemplazo, desde el inicio del experimento hasta su incorporación a la reproducción, se presenta en el cuadro III.4.3.3. Los animales mestizos del tipo F₁ alcanzaron ganancias superiores a los 500 g diarios, tanto en la época poco lluviosa como en las lluvias, lo que les permitió una ganancia acumulada de más de 520 g al término del experimento, que difirió (P<0,01) de los 441 g alcanzados por las hembras del otro genotipo (5/8 H x 3/8 C). También existieron diferencias significativas (P<0,05) a favor de los animales F₁, en cuanto al peso final alcanzado para la monta (294,9 vs 280,8 kg), a pesar de que estos fueron ligeramente menos pesados al comenzar el pastoreo.

La edad a la incorporación fue similar en ambos grupos de animales, con valores cercanos a los 23 meses.

Cuadro III.4.3.3. Comportamiento de los animales durante el ciclo de crianza.

<table>
<thead>
<tr>
<th>Indicadores</th>
<th>Tipo de animal</th>
<th>ES ±</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso vivo inicial (kg)</td>
<td>F₁ (½ Holstein x ½ Cebú)</td>
<td>2,47</td>
</tr>
<tr>
<td>Peso vivo final (kg)</td>
<td>(5/8 H x 3/8 C)</td>
<td></td>
</tr>
<tr>
<td>Edad a la incorporación (meses)</td>
<td>22,7</td>
<td>1,05</td>
</tr>
<tr>
<td>Ganancia promedio acumulada (g/animal/día)</td>
<td>524,5</td>
<td>20,08**</td>
</tr>
<tr>
<td>Ganancia promedio en el período poco lluvioso (g/animal/día)</td>
<td>508,6</td>
<td>18,68**</td>
</tr>
<tr>
<td>Ganancia promedio en el período lluvioso (g/animal/día)</td>
<td>584,6</td>
<td>18,08**</td>
</tr>
</tbody>
</table>

Valores con cifras desiguales en la horizontal difieren significativamente a P<0,05 (Duncan, 1955)
* P<0,05 ** P<0,01
Capítulo IV. Discusión de los resultados obtenidos

IV.1 Producción animal

IV.1.1 Ceba

Durante el periodo de ceba inicial, las ganancias de PV registradas por los animales Cebú, en ambos experimentos, se pueden explicar por el fenómeno del crecimiento compensatorio que debió tener lugar durante esa etapa de crecimiento, lo que provocó, probablemente, un mayor consumo y una utilización más eficiente de los alimentos disponibles en esta etapa de realimentación o una mejor disponibilidad-calidad de los alimentos (Baker, Young y Laws, 1985).

Al respecto, Patterson, Steen y Kilpatrick (1995) señalaron que el mejoramiento de la eficiencia de conversión de los alimentos en el periodo de realimentación, se debe a que los animales vienen con menores requerimientos para el mantenimiento, la eficiencia de utilización de la energía para el crecimiento y el engorde es mayor, la concentración de energía en los tejidos depositados y el contenido energético de las ganancias son menores y la posibilidad de consumo se incrementa.

Esto se demuestra en el balance alimentario realizado, donde se observó que, a pesar de la alta disponibilidad de pastos (la que prevaleció durante toda la época lluviosa), los animales no alcanzaron un peso que les permitiera consumos por encima de los 7 kg de MS/animal/día y, por ende, los aportes del pasto y los árboles del sistema solo cubrieron los requerimientos para ganancias de alrededor de 640 g en la Asociación y de 600 en los otros tratamientos (Anexo I).

No obstante, tampoco se puede descartar que, dada la alta disponibilidad encontrada, los animales en pastoreo pudieron haber hecho una muy buena selección del estrato superior de las gramíneas, compuesto por las hojas y tallos tiernos mayoritariamente, por lo que la biomasa consumida pudo haber sido aún mejor en cuanto a su composición química y nutricional y existir una subestimación de los aportes al realizar el balance alimentario (el cual tiene en cuenta la disponibilidad total de MS) y, por ende, una subestimación también de las ganancias esperadas.

En la ceba final las diferencias significativas observadas en cuanto a las ganancias de peso vivo a favor de los animales de la Asociación (las cuales repercutieron decisivamente en las ganancias de peso vivo acumuladas) estuvieron influenciadas, de forma decisiva, por el aporte de las leguminosas a la disponibilidad total, lo que constituía el 46,5 %. Este aporte mejoró la calidad del material consumido, especialmente en los meses que se aplicó la poda escalonada de las arbóreas, ya que las leguminosas de este tratamiento, en su conjunto, aportaron aproximadamente el 30 y el 41 %, respectivamente, de la energía y la proteína consumida por los animales en pastoreo.

Nótese, además, que los toros del tratamiento de guinea en monocultivo (control) consumieron un pasto de apenas un 7 % de proteína bruta, cercano a los límites establecidos por Milford y Minson (1965) para que el consumo de MS de los pastos disminuya; mientras que los toros del Banco tenían acceso a las leguminosas solo en días alternos, por lo que estaban en desventaja con sus similares de la Asociación, los cuales accedían a la leucaena y las demás leguminosas rastreras diariamente.

Esta estrategia de pastar el Banco de proteína en días alternos, durante la época poco lluviosa, se correspondió con el deseo de proteger la persistencia de la asociación gramíneas-leguminosas presentes en esa área reducida, ya que con este manejo alternó se propiciaba que el Banco se pastoreara solo cuatro veces en una misma estancia u ocupación, que en el caso de la época poco lluviosa fue de 9 días. Además, en investigaciones precedentes, relacionadas con el manejo de Bancos de proteína de glycine (Pereiro, 1985; Pereiro y Elías, 1987), se demostró que no había diferencias, en cuanto a producción animal se refiere, en pastar el Banco de forma diaria, en días alternos o cada tres días.

Pensamos que con esta estrategia de pastoreo, en los días de acceso al banco debe haberse incrementado el consumo de PB por el efecto de la leguminosa en sí, pero también porque debe haberse evidenciado un mayor consumo total de la ración, gracias a una mayor eficiencia de utilización de los pastos por las bacterias celulolíticas del rumen, las cuales necesitan fuentes de N altamente fermentables en el rumen para incrementar su crecimiento y reproducción (Molina, 1997; Tolera, Seyoun, Sundstol, 1998).

Sin embargo, de acuerdo con la disponibilidad de pastos y leguminosas encontrada en el sistema, y asumiendo que la eficiencia de su utilización haya sido máxima, el balance alimentario retrospectivo realizado indica que hay exceso de proteína ese día, pero la energía se convierte en una limitante, ya que apenas se cubren los requerimientos para ganancias de 430 g (Anon, 2000).

Este déficit de energía pudo limitar, en parte, la eficiencia de utilización del amonio producido a partir de la fermentación de las proteínas y la desaminación de los aminoácidos en el rumen y, por consiguiente, disminuir la síntesis de proteína microbiana y su pase al duodeno. El exceso de amonio no utilizable, a su vez, también...
pudo absorberse a través de las paredes ruminales y ser convertido en urea a nivel del hígado, con el consiguiente desvío de energía para la realización de este proceso, el cual cuesta 4 moles de ATP por mol de urea producido (Nelly, Park, Summers y Milligan, 1993; La O, 2001), lo que no permitió que las ganancias de los animales se incrementaran a partir del uso del N.

Por otra parte, en los días que no hubo acceso al banco se evidenció que, solo a base de pastos, no se cumplió con los requerimientos de energía ni de proteína bruta, por lo que debe haber un descenso en el crecimiento de los microorganismos celulolíticos a partir de una menor concentración de amonio a nivel ruminal y, por ende, una menor eficiencia de utilización de la celulosa y demás fuentes de energía a nivel ruminal.

Esto nos hace pensar que para las condiciones de nuestra investigación, donde no se emplean insumos externos ni se suplementa a los animales con fuentes de energía, este tipo de sistema de Banco proteico pastado en días alternos no debe ser el más adecuado, ya que la relación energía/proteína no parece ser la óptima y se impone un límite en la síntesis microbiana. En la actualidad se desarrollan tecnologías (Ruiz et al., 1999) en las que los animales tienen acceso libre al área con leguminosas, el área dedicada al banco proteico es mayor que 25% (hasta 50 %) y, por consiguiente, las ganancias son superiores a las obtenidas en este experimento; por ello, recomendamos mejor el uso de este tipo de sistema de banco de proteína, donde el animal se autorregula en el consumo de las leguminosas en dependencia de sus necesidades de mantenimiento y producción.

De todas maneras, es importante señalar que, a pesar de los problemas que pueda haber presentado la forma de utilizar el Banco de proteína, los resultados obtenidos no constituyen de por sí aspectos negativos para la producción animal, ya que en la época poco lluviosa no hubo pérdidas de peso vivo, sino ganancias de más de 300 g diarios, sin el uso de suplementación, lo que lo vislumbra como una alternativa más de producción para nuestros ganaderos, en momentos en que el suministro de insumos externos es casi nulo o muy inestable en las empresas.

En sentido general, se observó que las ganancias de peso vivo en la ceba inicial fueron superiores, en todos los tratamientos, a las informadas por Hernández et al. (1986) y Castillo et al. (2002), en asociaiones de leucaena con pastos naturales, y en el segundo, además de la oferta de pastos y árboles, los animales disponían de forraje de caña con urea al 1 %. Por otra parte, son similares a las obtenidas por Alfonso et al. (1988b) cuando se utilizaron pastos cultivados con fertilización nitrogenada (100 kg de N/ha/año) y a las reportadas por Valdés et al. (1993) en un ciclo de crecimiento-ceba de 14-15 meses de duración, donde el peso al sacrificio (400 kg) se obtuvo a los 20-22 meses y los animales en pastoreo se suplementaron con miel final más 10 % de urea, a voluntad, en la época poco lluviosa, unido al consumo de ensilaje fabricado en el 25 % del área de pastoreo en la época lluviosa.

Con respecto a los resultados de incremento de peso en la ceba final, en ambos experimentos, consideramos que fueron bajos (entre 176 y 268 g/animal/día para los animales de genotipo lechero y hasta 430 g en los Cebú), si se comparan con los de sistemas de suplementación y pastos cultivados y fertilizados, donde se obtienen ganancias entre 700 y 790 g/animal/día para esa etapa de ceba (Rodríguez, 1997; Euclides, Macedo y Oliveira, citados por Euclides, 2000), y también con lo obtenido por Castillo et al. (2002) cuando cebaron machos de línea de ceba de 430 g en los Cebú, suplementados con miel/urea, donde las ganancias oscilaron entre 720 y 740 g diarios. Sin embargo, la potencialidad de los sistemas silvopastoriles estudiados por nosotros no permite ganancias mayores en esa época del año, ya que a pesar de que la disponibilidad en la época poco lluviosa fue relativamente alta, los animales no tienen la capacidad abdómino-ruminal suficiente para consumir toda la biomasa necesaria, que les permita cubrir los requerimientos energéticos que incrementen las ganancias por encima de lo obtenido.

Como ejemplo práctico se puede citar el caso del sistema de Asociación del experimento III.1, donde en el balance alimentario instantáneo realizado en la época poco lluviosa el consumo calculado total fue de hasta 8,19 kg de MS (2,3 % del peso vivo), lo que aportó 17,7 Mcal, 7 menos de lo que se necesita para ganancias de 600 g diarios (Anexo II).

 Esto nos sugiere que en las tecnologías descritas anteriormente en la literatura puede estar ocurriendo una sustitución del pasto por los suplementos de alto poder energético ofrecidos en la época poco lluviosa (concentrados, melazas) y de esa forma se pueden cubrir con más facilidad los requerimientos de este nutriente, que es el factor que más limita la producción de los animales para la obtención de ganancias superiores en estos sistemas.

No obstante, si se analizan los resultados productivos de los períodos totales de crecimiento-ceba, se puede afirmar que son satisfactorios, ya que se obtuvieron totalmente en condiciones de pastoreo y sin el uso de alimentación exógena, aspecto ampliamente estudiado y recomendado por numerosos investigadores para este tipo de crianza (ver revisión bibliográfica), pero casi prohibitivo para Cuba en las condiciones actuales. La edad (24-28 meses) y el peso (entre 357 y 413 kg) obtenidos son mejores que los que cotidianamente se obtienen en condiciones de producción (Valdés et al., 1998), donde los toros que se alimentan a partir de pastos solamente, van al matadero con más de 30 meses y un peso de 250-270 kg.
En el caso de los machos de corte lechero que pastaron en la Asociación, parece que la presencia de los árboles en los potreros, que implicó una dieta de superior calidad y una mejora en el tiempo de pastoreo y confort de los animales motivado por la sombra (Cowan, Moss y Kerr, 1993), propició ganancias promedio acumuladas superiores a las de sus semejantes que se criaron actualmente en condiciones de producción sobre gramíneas solas, fertilizadas o sin fertilizar.

En este sentido, se observó un mejor incremento de peso que los obtenidos por Valdés et al. (1980) sobre los pastos *D. decumbens* (pangola), guinea y *C. dactylon* (bermuda), donde las ganancias acumuladas no rebasaron los 400 g/animal/día para la carga de 3 animales/ha y los 200 g/animal/día con 7,5 animales/ha, respectivamente. También fueron mejores que las obtenidas por Valdés y Batista (1982), que suplementaron a los animales con levadura torula, a razón de 0, 20 y 40 % de los requerimientos de proteína para 500 g de ganancia durante la época de sequía, y las ganancias diarias, como promedio anual, no sobrepasaron los 430 g/animal/día en ninguno de los tratamientos. Esto se atribuyó al pobre comportamiento en pastoreo de los animales empleados (7/8 Holstein x 1/8 Cebú).

Al comparar los resultados del plan internacional, las ganancias de nuestros genotipos lecheros (mas de 491 g diarios como promedio en todo el ciclo de ceba) fueron superiores a los 210 g/animal/día logrados por Foster y Blight (1983) en asociaciones de leucaena con *H. contortus* y toros Hereford, en el sudeste de Queensland, y por Pérez et al. (1997) en México, cuando no rebasaron los 500 g diarios con toros mestizos suplementados y pastos fertilizados.

No obstante, los resultados obtenidos aún son inferiores a los alcanzados en México por Carrete et al. (1993), quienes informaron ganancias individuales de 610 g/animal/día en los últimos 3 meses de la seca con toros mestizos Europeos x Cebú, que pastoreaban leucaena y estrella, y a los resultados de Loomba et al. (1994), los cuales obtuvieron ganancias de 656 g/animal/día en añojos mestizos Holstein x Cebú que pastaron de forma restringida en el período poco lluvioso y recibían miel con 10 % de urea a voluntad, además de un suplemento concentrado de harina de girasol a razón de 600 g/animal/día.

A nuestro juicio, los factores relacionados con el consumo voluntario de alimentos en determinados momentos de la época poco lluviosa, fueron los que más influyeron en las bajas tasas de crecimiento, ya que pudieron existir limitaciones de proteína digestible en el intestino derivadas de la fermentación energética, por los limitados aportes de energía metabolizable de la dieta y porque tampoco se cubrieron los requerimientos energéticos para ganancias mayores que 270 g diarios (Anexo IV).

En relación con esto, Minson, Cowan y Havilah (1993) señalaron que la cantidad de forraje que un animal ingiere es el factor más importante como determinante de la producción, cuando los forrajes constituyen prácticamente el único componente de la dieta; mientras que Steen (1995) señaló que el consumo de energía es el factor más importante que puede afectar el nivel de crecimiento del ganado de carne. Esta situación debió afectar ligeramente menos a los animales cebuinos, ya que es inherente a ellos un menor consumo voluntario en pastoreo (20 % menos que los animales *Bos taurus* en condiciones óptimas de manejo) y presentan menores requerimientos para el mantenimiento y crecimiento (McDowell, 1985).

Pensamos que es por esto que en nuestras investigaciones se evidenciaron diferencias en el peso final y las ganancias de peso vivo entre los diferentes genotipos, lo que pudo estar influenciado por la mejor adaptabilidad de los genotipos indoamericanos a condiciones de estrés ambiental y alimentario (Rizzi, Heinz, Cerutti y Alvarez, 1997; Casas, Antoni, Ramos, Cianzio y Marrero, 1997).

En este sentido, los reportes de Byers (1996) al trabajar con diferentes genotipos indican que los toros Brahman, alimentados con raciones bajas en energía, tuvieron una mayor eficiencia en la digestibilidad de la MS y energía digestible que los toros Hereford. En cuanto a los requerimientos de proteína, existen evidencias de que son menores en el Cebú y sus cruces, con respecto a las razas europeas; de la misma manera ocurre entre el Cebú y sus cruces, a favor del Cebú.

Plasse (citado por Rico y Planas, 1994) y Hernández, Hernández y Carballo (1992) también señalaron la necesidad de utilizar el genotipo Cebú en zonas de pastoreo, o de pobres condiciones nutricionales y de manejo, dado que en estas el uso del cruzamiento no conducirá a incrementos en los niveles productivos. De ahí la importancia de este tipo de animal para las condiciones de Cuba, donde en la actualidad casi todos los sistemas de ceba han pasado a ser a base de pastoreo y suplementación muy limitada en la época poco lluviosa.

No obstante lo planteado anteriormente, consideramos que las ganancias de más de 490 g (como promedio en toda la etapa de crecimiento-ceba) obtenidas en los genotipos lecheros son halagüeñas y resultó muy interesante el comportamiento de estos en la última etapa de la investigación, donde no hubo diferencias en las ganancias individuales a partir de los 24 meses de edad con respecto a los del tipo Cebú, principalmente en los últimos 4 meses de la engorda, donde disminuyen relativamente los requerimientos para esta categoría (Anon, 2000b).

Al respecto se conoce que estos animales de razas grandes tienen un potencial de ganancias superior a los 800 g diarios (Allen y Kilkeney, 1984; Albertí et al., 2001) si se ceban con dietas basadas en granos y forrajes...
de alta calidad, lo que provoca pesos al sacrificio de alrededor de 450 kg a la edad de 16 meses y de 500-540 kg a los 24 meses.

En este sentido, Euclides et al. (1997), al realizar un estudio con el objetivo de evaluar sistemas de ceba que acorten la edad al sacrificio y, a su vez, determinar en qué fase de la vida del animal es más conveniente la suplementación energético-proteica, concluyeron que las ganancias de los tratamientos en que los animales se suplementaron durante la seca fueron superiores a estos en que no se suplementó, con una media de 510 vs 375 g/animal/día.

En función de lo planteado, se podría proponer una tecnología en la cual los animales de genotipo lechero se engordarían desde los 6 meses hasta el año de edad (cuando la conversión de los alimentos por ganancia de peso vivo es mayor), en sistemas de pastoreo de gramíneas fertilizadas, suplementados con concentrados o subproductos de la industria azucarera (miel/urea, mieles proteicas, saccharina, etc.) y luego se introducirían en sistemas asociados, lo que abarataría los costos de producción para la ceba final, y se obtendrían animales con un peso final de alrededor de 450 kg y 17-18 meses de edad.

En el plano comercial estos animales (con una adecuada combinación de edad y peso al sacrificio) pudieran competir, desde el punto de vista de la calidad de su carne, con los provenientes de Europa o Canadá, ya que no habría limitaciones con respecto a la terneza o dureza de esta, ni tampoco en lo referente a la grasa excesiva, aspectos que limitan en la actualidad el comercio en frontera de nuestros animales, los que se sacrifican con muy bajo peso corporal (lo que implica bajos rendimientos de la canal), o se abaten con altos pesos y una edad muy avanzada.

En sentido general, los tres genotipos estudiados demostraron ser adecuados para la ceba en pastoreo, aunque los toros Cebú lograron mejores pesos finales, por encima de los 400 kg en ambos experimentos, lo que permite clasificarlos como animales de primera. De continuar la ceba de los genotipos lecheros, hubiera sido necesario alargarla durante 2,0-2,5 meses más, lo cual no sería prudente, ya que en esa etapa finalizaba la época lluviosa y, además, la edad de los animales podía rebasar los 30 meses de edad.

Teniendo en cuenta estos resultados se concluyó que, aunque los animales del tipo lechero no alcanzaron pesos finales similares a los del tipo Cebú en los sistemas estudiados, también pueden alcanzar niveles satisfactorios de comportamiento en pastoreo, lo que permite aclarar dudas que se presentan a veces por los mismos productores de carne a escala comercial. Las ganancias obtenidas durante la ceba fueron suficientes para lograr animales de segunda, con un peso superior a los 355 kg.

V.1.2 Hembras en desarrollo

Teniendo en cuenta las condiciones de bajos insumos externos utilizadas en nuestras investigaciones, así como los resultados que se reportan en la literatura, se puede afirmar que el comportamiento de las añojas de reemplazo, desde el punto de vista de las ganancias de peso vivo obtenidas (441-524 g diarios), fue bueno para ambos experimentos. Zamora (1983), al trabajar con novillas Holstein y pastos fertilizados, planteó que con ganancias de peso por encima de los 400 g/animal/día no deben existir dificultades para que las novillas se gesten tempranamente; mientras que los datos de Perón y Tarrero (1981; 1982), obtenidos en momentos que antecedieron al período de crisis económica que atraviesa el país, indicaron que en las condiciones de Cuba y con dietas basadas en forraje y concentrados, los animales del tipo Holstein x Cebú obtienen ganancias de 444-524 g/día.

Por su parte, Rosete et al. (1988), al trabajar también con pangola regada y fertilizada (300-400 kg de N/ha/año), reportaron ganancias de 520 y 490 g/animal/día con cargas de 4 y 8 animales/ha, respectivamente, cifras muy parecidas a las obtenidas en nuestras investigaciones, aunque en nuestro caso no se usó concentrados ni se fertilizaron los pastos. Esto sitúa a los sistemas silvopastoriles de bajos insumos estudiados por nosotros en franca ventaja con respecto a los que usan insumos externos, ya que en la actualidad la disponibilidad de estos es muy reducida y en su mayoría se destinan a los rebaños en producción de leche y a la cría de terneros en sus primeras etapas de vida.

Las ganancias obtenidas en nuestras investigaciones son mayores que las señaladas por Madrid-Bury, Faria-Mármol, Rojas, Chirinos, Ventura y González-Stagnaro (2001) al emplear en el estado de Zulia, Venezuela, el banco de proteína de leucaena durante dos horas diarias como suplemento al pastoreo de B. brizantha y P. maximum, el cual produjo ganancias diarias individuales de 401 g en novillas mestizas, que no difirieron de las obtenidas sobre pastos solamente (369 g/animal/día).

También superan a los obtenidos por Paterson y Samur (1981), los que trabajaron con añojas de la raza Brangus (de propósito cárnico) que pastorearon guinea con glycine y obtuvieron ganancias en la época de seca de 290 g/animal/día.

No obstante, la edad de incorporación a la reproducción fue relativamente alta (22,7-27,4 meses) si se compara con lo informado por Bobilev, Pigarev y Potokin (1979), quienes recomiendan inseminar las novillas a una edad de 16-18 meses, cuando han alcanzado el 70 % del peso vivo de una vaca adulta. Tampoco se
corresponden con lo alcanzado por Zarragoitía et al. (1992), quienes alcanzaron una edad de 19,3 meses y un peso a la incorporación de 321 kg en una asociación de leucaena con bermuda 68 (C. dactylon), pero utilizando una mejor relación peso/edad que la nuestra al incorporar los animales al experimento.

De igual forma son menores a los resultados encontrados por Hau y Santos (1999) con novillas cruzadas (Holstein x Cebú) que se alimentaron con forraje de Taiwan al 2 % del peso vivo y concentrados (16 % de PB), los cuales se ofrecieron según la ganancia esperada. En este caso la edad a la pubertad se alcanzó a los 21,5 meses.

En nuestros experimentos, la oferta de pastos y leucaena suplió los requerimientos de energía y sobrepasó los requerimientos de proteína bruta para un crecimiento adecuado de los animales (Anexos III y V). Se evidenció que solo la energía fue limitante en la época poco lluviosa para lograr ganancias mayores que las obtenidas, lo que estuvo asociado a la baja capacidad de ingestión de los animales, por una parte, y a la reducción de la disponibilidad instantánea de las gramíneas en el caso del tercer experimento (Jordán y Senra, 1988), donde los días de estancia se alargaron hasta 12, buscando incrementos en los días de reposo. El balance alimentario, realizado en la época poco lluviosa, demostró que los animales pueden consumir entre 7 y 8 kg de MS/día y el déficit de energía es de alrededor de 4 Mcal para llegar a ganancias superiores a los 500 g, aunque tiene un gran potencial en cuanto a proteína y Ca se refiere.

Es por eso que estimamos que la incorporación tardía de las hembras a su vida reproductiva, no estuvo motivada por un plano de alimentación deficiente durante la ejecución de las investigaciones, sino por el bajo peso corporal alcanzado por estas durante la fase posnatal hasta un año, la cual no se realizó en nuestros sistemas experimentales. Los animales, que provenían de empresas pecuarias comerciales, se incorporaron a las investigaciones con un peso muy bajo (entre 100-170 kg), lo que indica que las ganancias diarias en las edades tempranas de crecimiento no fueron superiores a los 370 g/animal y, en ocasiones, estuvieron por debajo de los 200 g diarios.

Al respecto, Pérez, Khalil, Vaccaro y Rodríguez (1997) señalan que en las condiciones del trópico, con 4-7 meses de sequía y pastoreo en praderas de mediana calidad, las hembras de reemplazo crecen muy lentamente hasta los 18 meses, lo que compromete la eficiencia del sistema y se obtienen edades avanzadas al primer parto.

Esto se reafirma con lo reportado por Menéndez (1984) y Corvisón, Mompíe, Vázquez, Pereira, Brito, Rodríguez y Rivero (1991), los cuales señalaron que las ganancias de las terneras mestizas Holstein x Cebú comienzan a descender luego del destete, principalmente por problemas de alimentación y manejo, y que solo a partir de los 12 meses de edad se nota su recuperación si estas condiciones negativas no prevalecen.

De ahí la importancia de desarrollar tecnologías integrales para la cría de las hembras de reemplazo, las cuales incluyen las diferentes etapas de vida de los animales, desde el nacimiento hasta el parto de la novilla, con la necesidad de reforzar los métodos de manejo y alimentación en las fases de lactante y posteriores al destete, para que los animales expresen su potencial de crecimiento y arriben al año de edad con adecuados pesos.

Un simple cálculo, basado en los datos de la literatura (Plaza et al., 1997; Plaza, Ybalmea y Enríquez, 2000), indican que en la fase de lactantes una adecuada alimentación, que incluye la leche o sus sustitutos hasta los 120 días, o en su defecto el amamantamiento restringido y cantidades moderadas de pienso y heno a partir de los 21 días de edad, permitirían ganancias de alrededor de 600 g diarios y, por consecuencia, una ternera al destete de alrededor de 110 kg.

Si no se descuida la fase posdestete, que a nuestro criterio es la más peligrosa de todas, y se alimenta a las hembras con dietas que incluyan hasta un 75 % de pastos de buena calidad (fertilizados o asociados con leguminosas rastreras o arbustivas), combinado con concentrados o dietas de mieles con urea ad libitum, podríamos lograr añajas a los 12 meses con alrededor de 245-260 kg, lo cual es un animal fisiológicamente preparado para hacer altos consumos de gramíneas y leguminosas en sistemas silvopastoriles de bajos insumos externos.

Si en estos sistemas silvopastoriles somos capaces de lograr las ganancias que se obtuvieron en nuestros experimentos (±0,450 kg diarios por animal), entonces la incorporación a la reproducción se estaría logrando con un peso de 320-325 kg y una edad de 18 meses.

A todo esto se suma la importancia, desde el punto de vista fisiológico, de garantizar un adecuado crecimiento en las edades tempranas de vida, por lo que esto representa para el desarrollo futuro del aparato reproductivo de la futura madre y la formación de los tejidos secretores de leche, el cual no es recuperable con una sobrealimentación en etapas posteriores del desarrollo de la hembra. Al respecto, Ceró, Alfonso y Rivero (1986) informaron que cuando las hembras ganan por debajo de 200 g diarios en su fase posdestete, se pierde la capacidad de crecimiento compensatorio con la próxima alimentación y se retiene el crecimiento y desarrollo, con la disminución, a su vez, de la producción. Esto traería como secuela problemas al momento del parto, bajas producciones de leche en la primera lactancia y una vida productiva útil mucho más corta.
Ya en 1989, y posteriormente en el 2000, Zamora et al. plantearon la necesidad de estas tecnologías integrales y recalcaron que, en la fase de 10 a 18 meses de edad, es imprescindible la suplementación con concentrados, con el fin de cubrir los déficit energéticos que no pueden ser aportados por los pastos y forrajes para ganancias superiores a 550 g diarios. Moderadas cantidades de pienso, como las recomendadas por estos autores (1,0-1,5 kg/día), o la suplementación con miel final, podrían haber garantizado en nuestras investigaciones la energía necesaria para lograr incrementos de peso de hasta 500 g diarios en las épocas poco lluviosas, lo que redundaría en ganancias promedio acumuladas superiores a esta cifra, la cual se plantea por la literatura (Petitclerc y Bailey, 1991; Sejersen, 1994) como adecuada para lograr un buen desarrollo corporal de las hembras, sin afectar el desarrollo de la glándula mamaria y la subsiguiente producción de leche.

Con relación a los resultados de los diferentes genotipos en pastoreo, hubo una tendencia al mejor desempeño, en cuanto al peso de incorporación y la ganancia diaria acumulada, en las hembras del tipo F₁. Los análisis demostraron que los animales con mayor porcentaje de Holstein pesaron 14 kg menos a la edad de incorporación y ganaron 84 g diarios menos, como promedio, al compararse con estas.

Esta superioridad de los animales F₁, pudo estar influenciada por el efecto de la heterosis directa (Arthur, Hearnshaw, Kohun y Barlow, 1994), lo que indica las ventajas del cruzamiento. A esto se suma el planteamiento (Barlow, 1981) de que el efecto de la heterosis para el crecimiento se hace mayor con favorables condiciones de nutrición y ambiente, las cuales prevalecieron durante el experimento.

Estos resultados coinciden con los obtenidos por Mezzadra, Homse, Sampedro y Alberio (1993), aunque ellos trabajaron con hembras Hereford y sus cruces con Brahman; los resultados del primer genotipo (Bos taurus) fueron los peores. En este sentido, Winter, Winks y Seebeck (1991) plantearon que los rebaños de razas puras o de cruces ya estabilizados son más simples de trabajar desde el punto de vista del manejo; sin embargo, con ellos no se obtiene el beneficio del vigor híbrido que se logra con el cruzamiento (animales F₁), el cual tiene potencial para incrementar la eficiencia de ganancia de peso, producción de leche, fertilidad y utilización de los alimentos.

Los resultados de esta investigación permiten afirmar que es posible la cría de hembras de reemplazo de genotipos típicos de nuestra ganadería en condiciones de silvopastoreo, aunque parece adecuado prever el uso de algún suplemento energético en la ración diaria de la época poco lluviosa y de esta forma elevar las tasas de ganancia hasta los 550-600 g/animal/día, además de garantizar un peso/edad adecuado en cada etapa del desarrollo.

IV.2. Pastizales

En todos los experimentos los datos de disponibilidad total encontrados para la época lluviosa (entre 16 y 30 kg de MS/100 kg de PV/día) fueron altos, coincidentes con los de Valdés, Jordán, Crespo, Castillo, Cino, Febles, García-Trujillo, Molina, Reyes y Senra (1995), y ligeramente superiores a los informados por Sánchez (2002). Cabe destacar que estos indicadores resultaron superiores siempre en el sistema de Asociación, lo que estuvo determinado principalmente por el aporte de las leguminosas, tanto herbáceas como arbóreas.

Los menores rendimientos de biomasa total (entre 7,1 y 10,1 kg de MS por cada 100 kg de peso vivo) se registraron siempre en la época seca, lo que se debió principalmente a la disminución de la disponibilidad de las gramíneas en esa etapa. Similar comportamiento se informó en Cuba por Iglesias (1996) y Lamela, Matías y Gómez (1999) para diferentes sistemas silvopastoriles, en los que se obtuvieron las mayores disponibilidades de pasto siempre en el período lluvioso. En esta época del año las precipitaciones son mayores, al igual que la temperatura y la radiación solar, lo cual favorece el crecimiento de los pastos. Este factor de estacionalidad ha sido señalado por innumerables autores del área tropical (Link, 1996; Camargo, Fariñas, Timan y Peraza, 1997; Combellas, 1997; Casas et al., 1997).

Estos niveles de oferta de materia seca para el período poco lluvioso se pueden catalogar de singular importancia, ya que se lograron en condiciones de muy bajos insumos, en secano y sin la aplicación de ningún tipo de fertilizante en el caso de las áreas con árboles; además, se hallan en el rango de los valores óptimos para que no decline el crecimiento, que se encuentra, según la literatura para los pastos tropicales, entre 7-10 kg de MS/100 kg de peso vivo (Stobbbs, 1978; García-Trujillo y Cárceles, 1984), por lo que de forma general no se evidenció un déficit de alimentos en esta época.

Podemos afirmar que la oferta total de biomasa de los sistemas fue suficiente para cubrir los requerimientos de mantenimiento y parte del crecimiento de los animales en ambas épocas, en los cuales su capacidad de ingestión nunca rebasó los 8,5 kg de MS diarios (Anon, 2000). En este sentido, Rodríguez (1997) había señalado que en la terminación de toros de ceba las ofertas deben ser tales que propicien consumos de 10 kg de MS/animal/día, pero con toros de 450 kg, peso que no se alcanzó en nuestras investigaciones.

Esta disponibilidad de pastos fue superior a lo reportado por Corbea, Hernández, Machado, Lamela y Cáceres (1996) para pastos macollosos de secano, fertilizados con 150-180 kg de N/ha/año, lo que motivó que
no ocurren pérdidas de peso vivo en ninguno de los experimentos, aunque las ganancias en la época poco lluviosa se deprimieron en relación con la época lluviosa.

Con respecto a la leucaena, los datos de disponibilidad fueron muy variables, con rangos de 0,293-2,56 y 0,113-2,4 kg de MS/100 kg de PV para las épocas lluviosa y poco lluviosa, respectivamente, lo que estuvo determinado por el tamaño de los animales en el momento de su utilización, el uso dado a la arbórea (ramoneo, poda o ambas combinadas) y el tipo de sistema utilizado (Banco o Asociación), así como el manejo de estos.

Estos datos son superiores a los observados por Hernández et al. (1986) al explotar sistemas asociados similares a los nuestros, con toros Cebú y pastos naturales, y a los resultados de Hernández, Simón y Duquesne (2001) al trabajar con asociaciones y una densidad de árboles de 600-800/ha. Estos últimos informan un rango entre 0,700 y 0,300 kg de MS/animal/día, y una disminución con el tiempo de pastoreo.

También son mayores que los reportados por Castillo et al. (1992) en otros trabajos, donde se señala que las ofertas de MS comestible de esta planta perenne leñosa, al evaluar varios porcentajes de leucaena en bancos de proteína, estuvieron en un rango entre 160 y 910 g de MS/animal/día.

Esta diferencia en la disponibilidad de leucaena pudo estar dada por el tamaño y la frondosidad de los árboles utilizados, los cuales eran grandes, de forma escalonada, y rebasaban en su mayoría los 2 m de altura al momento de la poda del período poco lluvioso; también pudo influir el grado de desarrollo y madurez de los árboles, los cuales comenzaron a explotar por primera vez en la época poco lluviosa, el tamaño promedio un poco mayor y por último, la densidad de siembra utilizada, que proporcionó un mayor espacio vital para el desarrollo de las copas y disminuyó la competencia entre plantas. No obstante, estos datos son menores que los obtenidos por Urbano, Dávila y Moreno (1997) cuando evaluaron 13 ecotipos de leucaena en pastoreo y encontraron valores medios de oferta de 10,81 t de MS/ha/año.

En este punto es necesario resaltar el papel desempeñado por la poda escalonada de la leucaena en la época poco lluviosa, cuando la oferta de pastos declinó y la disponibilidad de ramoneo era baja, debido a la altura de las plantas y al bajo porte de los animales. Esto garantizó ofertas por poda de 0,447-2,4 kg MS/100 kg de PV y aseguró aproximadamente entre el 14-30 % de los requerimientos de energía y entre el 24-41 % de los requerimientos de proteína de los animales en esa época.

Esta poda se hizo a una altura de 150-170 cm, basado en las observaciones preliminares realizadas a los animales que pastaban en plantaciones de leucaena, donde se detectó que estos son capaces de alcanzar los rebrotes nuevos a esa altura, durante el ramoneo, en sus primeras fases de crecimiento, tanto en el engorde como en las hembras en desarrollo. También Hernández et al. (2001) señalaron, que en condiciones de pastoreo, los animales en crecimiento y de porte y peso pequeños, ramonearon hasta una altura de 100-150 cm; mientras que los de mayor talla y peso (alrededor de 420 kg) lograron alcanzar el forraje incluso a los 2 m de altura.

Sin embargo, la altura prefijada provocó que, hacia finales de la época lluviosa, las plantas presentaran alturas superiores a los 2 m, lo que limitó el ramoneo pero no representó un grave problema para el sistema, ya que los animales fueron capaces de quebrar o doblar las ramas primarias del tallo principal y consumir el follaje, además de que las plantas de leucaena utilizadas en nuestras investigaciones produjeron una excelente cantidad de follaje (evidenciado a través de sus rendimientos) y ramificaron, incluso, desde la base de la planta después de la poda.

En Australia, Jones (1994) también reportó similar comportamiento de los animales con el pastoreo-ramoneo, donde las plantas más altas y los tallos son, en ocasiones, quebrados por los animales hambrientos. Por su parte, Shelton et al. (1994) señalan que en Vanuatu y Papua-Nueva Guinea los animales pastorean en plantaciones de leucaena que han alcanzado más de 10 m de altura y el ganado consume las ramas más bajas, así como las nuevas plantas que emergen.

Otro aspecto que se consideró para prefijar la altura de poda fue la posibilidad de que, a alturas menores, se podría correr el riesgo de provocar defoliaciones más intensas en los rebrotes en crecimiento y, por lo tanto, su eliminación paulatina, ya que no existía la posibilidad de un reposo prolongado para la arbórea (máximo de 45 días en los sistemas que utilizaron 10 cuartones), lo que el efecto de las defoliaciones repetidas podría llegar a ser acumulativo y la utilización progresiva de las reservas podría reducir su contenido en las plantas. Al respecto, Stür, Shelton y Gutteridge (1994) plantearon que el rebrote depende de la disponibilidad de tejido meristemático activo (yemas), de la cantidad y de la capacidad fotosintética del área foliar residual, así como de la movilización de los carbohidratos solubles y otras reservas remanentes después de la defoliación.

El manejo realizado propició que la leucaena en pastoreo persistiera y se mantuviera rindiendo con aceptables valores de MS/ha/rotación. La decisión de podar a alturas por encima de los 150 cm se corroboró luego con las investigaciones de Francisco y Simón (1998; 2001), donde se apreció que las mayores producciones de biomasa comestible se presentaron en leucaena al cortar entre 100 y 150 cm, mientras que las menores fueron halladas en la altura de 50 cm, siempre que se combinó con guinea.

Según estos autores, al podar a baja altura (50 cm) se limitó el proceso de fotosíntesis, debido a que el corte se encontraba por debajo del estrato herbáceo y aumentó la competencia entre las plantas por la luz solar. En el caso nuestro, donde se trabajó también con la guinea likoni como pasto base, este efecto no existió, pero
mayor y a ctiva extracción de nitrógeno debido a la sombra, al mejorar la mineralización de este en el suelo fue de 7 %. En el área con leucaena fue superior, ya que alcanzó 10 % de proteína bruta; mientras que en la gramínea sola en este sentido Ruiz et al. (1998), al valo rar el comportamiento del pasto estrella sin sombra o beneficiado por la temperatura foliar de la planta, modifican también el contenido de proteína de los pastizales tropicales. En los no asociados. que se manifestó en el contenido de proteína bruta de los pastos asociados, que resultó siempre superior al de los no asociados. Con respecto a la calidad del pasto asociado, siempre mantuvo un aceptable nivel de proteína y mostró un comportamiento muy interesante en los sistemas, principalmente en dos aspectos: no hubo una caída drástica de los tenores de proteína al avanzar la edad de rebrote (principalmente en la época poco lluviosa, donde el contenido proteico fue superior a 10 %) y, por otra parte, se observó que el período de madurez se prolongó, manteniendo a los 50-60 días un forraje relativamente verde, con tallos menos lignificados. Observaciones similares se han hecho en Africa (Wallace y Batchelor, 1997), donde se encontró que la evapotranspiración de la guinea se redujo en un 50-70% bajo la sombra y, por ende, se mantuvo verde durante 6 semanas más en la época de seca al compararse con la guinea que estaba en pastoreo abierto.

Estos niveles proteicos alcanzados en las gramíneas asociadas (tanto las del Banco como las del sistema de asociación en el 100 % de la área) son mayores que los informados por Simón, Hernández y Duquesne (1995) para pastos naturales asociados a especies arbóreas (6,8-7,0%), lo que nos indica la importancia del uso de los pastos mejorados para poder disponer de una dieta de mayor calidad en términos de PB.

A su vez, son superiores a los obtenidos por Reinoso (2001) al evaluar el pasto estrella asociado con leucaena en sistemas silvopastoriles sobre suelos férteles (entre 8,9 y 10,4 %) y equivalentes a los que se informan cuando se emplean niveles de fertilización entre 150–300 kg de N/ha/año (Pereira, Lamela y Ripoll, 1990), aunque en nuestro caso no se utilizó ningún tipo de fertilizante químico.

Esto permite señalar que, en los sistemas agroforestales pecuarios, los árboles suministran nutrientes a los cultivos acompañantes a través de la captura de estos por la deposición atmosférica, la fijación biológica de nitrógeno y la absorción de nitratos de las capas profundas del subsuelo (Sánchez, Buresh y Leakey, 1997). Estos autores afirman que los árboles contribuyen a acelerar el ciclo de nutrientes en el suelo, al propiciar una rápida descomposición de la hojarasca, las raíces muertas y las heces de los animales en pastoreo, lo que resulta en la formación de formas orgánicas de N y P, que al mineralizarse quedan disponibles para los cultivos acompañantes.

También Tang (1996) y Ruiz, Febles, Jordán, Castillo y Díaz (1998) señalaron la capacidad de fijación de N atmosférico que tienen las leguminosas, así como su poder de transferencia a las gramíneas acompañantes, lo que se manifestó en el contenido de proteína bruta de los pastos asociados, que resultó siempre superior al de los no asociados.

Otro aspecto que pudo influir fue la sombra de los árboles. Estos, al atenuar la intensidad de luz y la temperatura foliar de las plantas, modifican también el contenido de proteína de los pastizales tropicales. En este sentido Ruiz et al. (1998), al valorar el comportamiento del pasto estrella sin sombra o beneficiado por la que proyectan las plantas de leucaena en toda el área de pastoreo, obtuvieron que la calidad del pasto estrella en el área con leucaena fue superior, ya que alcanzó 10 % de proteína bruta; mientras que en la gramínea sola fue de 7 %.

Este aumento del contenido mineral, y en especial del contenido de N, puede estar relacionado con una mayor y activa extracción de nitrógeno debido a la sombra, al mejorar la mineralización de este en el suelo...
Los resultados de los experimentos de pastoreo en diferentes ambientes son interesantes y requieren más estudios futuros. Algunos de los resultados sugerían que los árboles de sombra permiten un uso más eficiente de la radiación solar y, con ello, una mayor actividad fotosintética, al mejorar las condiciones del microclima en cuanto a la estabilidad de las temperaturas diurnas y nocturnas, humedad, disponibilidad de agua y condiciones de iluminación.

Los resultados acercan de los contenidos proteicos de los pastos en ambos tratamientos son interesantes y merecen estudios futuros más profundos, ya que no se concibieron en el diseño de nuestras investigaciones; estos, en parte, coinciden con los de Roche y Hernández (citados por Martín, 1998), quienes refieren que durante la época lluviosa la calidad (contenido de nitrógeno y digestibilidad) del pasto es mejor que durante la época lluviosa; sin embargo, los datos de Lamela, Fung y Esparza (1995), al trabajar con guinea cv. SIH-127 en condiciones comerciales, demostraron que el contenido de PB fue mayor en lluvia, lo que coincide con los resultados informados por Silva y Fawa (1995).

La calidad de la biomasa ofertada resultó muy superior en los tratamientos con leguminosas, donde la leucaena desempeñó un papel importante en el aporte de nutrientes a los animales en los momentos de mayor escasez de pastos, y se obtuvo un forraje con un contenido proteico de 22-27 %, valores que están dentro de los rangos informados con anterioridad por Cáceres y Santana (1990), Escobar (1996), Vargas et al. (1994), Cáceres y González (1998) y Gutiérrez, Delgado, Oramas y Cairo (2000).

Esto concuerda con lo planteado por Norton (1994) acerca de que las concentraciones de proteína de los árboles utilizados tradicionalmente en la alimentación de los rumiantes presentan niveles de 12 a 30%, valores altos en comparación con los de los pastos maduros, que oscilan entre 3 y 10%.

Estas características de L. leucocephala (alta calidad nutricional, fijación de nitrógeno, rápido crecimiento, tolerancia a la sequía y adaptación al ramoneo y la poda) la convierten en la especie utilizada con mayor éxito en otros países de América, como Cuba (Ruiz et al., 1999) y Venezuela (Clavero, 1998b).

En relación con los contenidos de fósforo y calcio de la leucaena, estos fueron muy variables entre los diferentes experimentos, aunque no limitantes de la producción animal. Estimamos que esta variabilidad pudo estar determinada por el propio manejo a que fueron sometidos los árboles, ya que en los muestreos se tomó, indistintamente, tanto el forraje proveniente del ramoneo como el de la poda; también la altura de estos variaba en dependencia del sistema y el tiempo que medió entre las podas y el comienzo de las mediciones. Por otra parte, los días de reposo y estancia de los animales en los cuartones también fueron muy variables, en función del número de cuartones por experimento.

Dichos contenidos se mantuvieron con valores similares a los citados por Shelton et al. (1994) para diferentes tipos de Leucaena. No obstante, los valores de Ca, en ocasiones, fueron ligeramente menores que los informados por Murgueitio et al. (2001), ya que no se superaron los 20 g por cada kg de MS ofertada; sin embargo, fueron mayores que los reportados por Barnes (1995) cuando evaluó la leucaena en otras arbóreas en experimentos para la producción de forraje, donde esta última alcanzó valores de 0,99-1,74 %. También son superiores a los informados por Agishi (1983), quien obtuvo porcentajes de 0,97 en condiciones de pastoreo en Nigeria.

Con respecto a las gramíneas, los valores de Ca en la dieta animal siempre fueron superiores a los recomendados por McDowell y Conrad (1977) como niveles críticos para cubrir los requerimientos de los animales en pastoreo, no así el P, que en ocasiones se encontró por debajo de 0,25 %, lo que evidenció que existe esta limitante en los sistemas con árboles, lo cual se acentúa en los suelos deficientes en este mineral (Rolo, 1999).

Resultados similares encontró Sánchez (2002), cuando los valores de P en guinea y estrella asociadas con leucaena no superaron el 0,22 % y esto condicionó la necesidad de una suplementación con este mineral a las vacas que se encontraban en períodos de lactación.

A su vez, la fibra bruta es un indicador de la calidad del pasto, ya que cuando se incrementa obedece a un cambio de las partes menos digeribles de la planta. En nuestras investigaciones las gramíneas tuvieron valores de fibra bruta entre 36 y 31 % para las épocas lluviosa y poco lluviosa, respectivamente, con diferencia significativa entre épocas.
Estos valores coinciden con los informados por Sánchez (2002) para la época poco lluviosa, pero son mayores para las lluvias y se encuentran entre los rangos publicados por Anon (2000) en las tablas de valor nutritivo y requerimientos para el ganado bovino.

La fibra bruta hallada en la leucaena sobrepasó el 20 % para ambas épocas, lo que no coincide con los datos de la FAO (1998a) y los de Sánchez (2002) en un sistema asociado de guinea y leucaena para la producción de leche en vacas de primer parto; sin embargo, son semejantes a los informados por Clavero (1998a), quien señala valores del 20% para este indicador.

En la dinámica de la composición botánica se observó siempre una reducción de la guinea likoni en los sistemas de Banco de proteína, con un aumento de otras gramíneas (tanto cultivadas como naturales) y áreas de despoblación, lo que estuvo motivado por factores propios del manejo de los potreros.

En el primer experimento esto pudo estar asociado a que en la ceba inicial de este tratamiento se pastoreó sólo el área con likoni (75 % del área total) para preservar los cuartones con leguminosas, lo que motivó un incremento de la carga en esa porción del pastoreo. Luego, en la época poco lluviosa, el pastoreo del Banco de Proteína fue en días alternos y con libre acceso, por lo que la presión de pastoreo se mantuvo alta sobre el área de la likoni.

Ya en el segundo experimento, realizado en la misma área experimental, se demostró que la estrategia de pastar el Banco de forma restringida, durante 2-3 horas diarias, tampoco resolvió el problema de la presión e intensidad de pastoreo sobre el área de gramíneas, principalmente en la época poco lluviosa, cuando la disponibilidad de pastos era más limitada y los animales no contaban con alimentos suplementarios, por lo que se elevó la eficiencia del uso del pasto en esa área, con un pastoreo más a fondo de la gramínea en monocultivo.

A esto se suma que el tiempo de ocupación de los cuartones en ambos experimentos (9 y 12 días por cuartón durante 24 horas, respectivamente), provocó que el efecto del pastoreo sobre los rebrotes tiernos de la gramínea fuera más violento, comprometiendo la persistencia de las plantas como consecuencia del eventual agotamiento de las reservas orgánicas que son utilizadas para el rebrote. Al respecto Voisin, en su Segunda Ley del pastoreo rotacional (1974), y Pinheiro (1991) ya habían planteado que el tiempo de ocupación de un potrero debe ser suficientemente corto para que el rebrote incipiente de las plantas que fueron pastoreadas al inicio de un período de ocupación no vaya a ser defoliado por los animales dentro del mismo ciclo de pastoreo.

Es por todo lo descrito anteriormente, que opinamos que el uso de sólo cuatro cuartones en este tipo de sistema de Banco de Proteína, donde no se fertilizó ni se suplementó a los animales en canoa durante el período poco lluvioso, no parece ser el más adecuado, por lo que hay que aumentar el número de cuartones o, en su defecto, diseñar estrategias de suplementación para disminuir la presión de pastoreo sobre el pasto base.

En este sentido, el diseño del sistema de pastoreo de nuestros experimentos se basó en los resultados de Senra, Ugarte, Menchaca y Galindo (1985) y Senra, Menchaca, Galindo y Ugarte (1985) y en los obtenidos por Delgado y Alfonso (1974), donde se recomendó el uso de cuatro cuartones en diferentes pastos y sistemas de rotación, además de que en las condiciones de producción este es el número de cuartones que más se utiliza, debido principalmente a limitaciones de orden económico para adquirir el alambre y los postes. Sin embargo, comprobamos luego que prefijar el número de cuartones sin antes tener elementos básicos suficientes acerca de la potencialidad de producción de los pastos involucrados fue erróneo, ya que esta puede variar de acuerdo con los insumos externos que se empleen, el clima de la localidad, la variedad o tipo de pasto que se explota, la categoría animal, las condiciones del suelo, etc.

De hecho, quedó demostrado que, si la economía del productor solo permite invertir en un número de cuartones pequeño (cuatro solamente en nuestro caso) y la rotación es rígida, para lograr amplios tiempos de reposo se necesita incrementar considerablemente los días de ocupación en los cuartones, con el consiguiente deterioro del pastizal, ya que incluso los 36 días de reposo logrados parecen no ser suficientes para una recuperación total en el período poco lluvioso, donde además de las bajas precipitaciones, se suma la disminución de la luminosidad y la alta evaporación, factores de suma importancia en el crecimiento de los pastos.

Al respecto, Simón (2000) recomendó períodos de descanso superiores a los 45 días para este tipo de sistemas con árboles, lo que se logra con ocho cuartones o más; mientras que en los trabajos desarrollados por Ella, Blair y Stür (1991) se evidenció una lenta recuperación de la leucaena y los pastos en condiciones de sequía, y recomendaron la necesidad de un manejo cuidadoso en lo que al reposo se refiere.

Sin embargo, los resultados del sistema Asociación demostraron una buena persistencia de la guinea likoni en pastoreo, característica que había sido señalada anteriormente por Hernández y Cáceres (1983). A pesar de la presencia de los árboles en toda el área de pastoreo, la composición botánica del pasto se mantuvo bastante estable, a través de los años, durante todo el período experimental, lo que indica, o bien una buena adaptación de las gramíneas a la sombra, o que la densidad de 555 árboles/ha fue adecuada para no entorpecer el crecimiento de estas por falta de luz.
En ocasiones se detectó una ligera disminución de la guinea en la composición botánica de estos sistemas asociados, lo que tuvo su causa en el desarrollo de otras gramíneas, pero especialmente en el crecimiento del pasto angleton, el cual fue desplazando a la guinea en aquellos puntos de algunos cuartones donde en la época lluviosa se produjeron encharcamientos prolongados por problemas de drenaje. No obstante, consideramos que no hubo afectaciones de importancia en el pastizal que condujeran a su deterioro, lográndose un equilibrio aceptable de los componentes. La característica de *L. leucocephala* de presentar una copa rala y, por ende, permitir una penetración adecuada del sol a la superficie del suelo, unido a sus valores moderados de desarrollo radicular en los primeros 10 cm de la superficie del suelo (lo que limita la competencia por los nutrientes con los cultivos acompañantes), provocó que bajo su cobertura se desarrollara una población densa de gramíneas (Schroth, Kolbe, Pity y Zech, 1996).

Esto se evidenció en el porcentaje de área cubierta, que siempre fue mayor que 90 %, lo que coincide con lo señalado por Ruiz et al. (1999) cuando en experimentos de pastoreo con leucaena asociada, apreciaron que el comportamiento de la composición botánica, en relación con la incidencia de malezas, nunca fue superior al 10 %, y el componente gramínea del pasto asociado llegó a alcanzar valores hasta del 100 %.

Con respecto a las leguminosas, en el caso de las herbáceas también se evidenció, de forma general, una estabilidad en todos los sistemas estudiados; sin embargo, se observó que *N. wightii* cv. Tinaroo y *M. atropurpureum* cv. Siratro fueron menos resistentes al incremento de la presión de pastoreo en la época poco lluviosa, lo que parece estar relacionado con su estructura o hábito de crecimiento voluble, por lo que al ser consumidas por los animales resultan removidos los puntos vegetativos de estas plantas con su consiguiente afectación. *T. labialis* cv. Semilla Clara resultó menos afectado en su población; mientras que la población de *I. mucronata*, especie espontánea en el lugar, se incrementó, lo que debe estar estrechamente relacionado con su adaptación al lugar y su estructura de crecimiento. Este comportamiento de las leguminosas rastreras corroboró la importancia de combinar diversas especies con diferente comportamiento estacional, como vía para estabilizar la población de leguminosas a lo largo del año (Crowder y Chheda, 1982).

Durante la ejecución de las investigaciones la leucaena mantuvo casi inalterable su población en todos los sistemas, lo que demuestra que se adaptó a las condiciones de suelo presentes en el área experimental (Shelton, 1996) y resistió el manejo aplicado.

Se evidenciaron mejores resultados productivos, tanto desde el punto de vista de los animales como del pastizal, en los sistemas donde el pasto estuvo asociado a los árboles en el 100 % del área, aunque no se deben descartar los obtenidos en los demás sistemas estudiados, ya que en la situación actual que atraviesa la ganadería cubana estos también constituyen una alternativa por sus resultados positivos y el bajo uso que hacen de los insumos externos.
Capítulo V. Validación de los resultados en condiciones comerciales de la finca de la Estación “Indio Hatuey”

V.1. Crianza de hembras de reemplazo del genotipo (5/8 Holstein x 3/8 Cebú) en un sistema de Asociación de pastos con árboles en toda el área de potreros

V.1.1. Introducción

En el análisis de los últimos años (Dirección Nacional de Genética, 2000) se demuestra que la hembra en desarrollo está seriamente afectada por problemas de alimentación y manejo, y esto se manifiesta en las ganancias de peso diario promedio, que no sobrepasan los 320 g/día. Ello determina una edad promedio de incorporación de 27,8 meses e intervalos de incorporación-primer servicio e incorporación-gestación de 125 y 131 días, respectivamente, con una edad promedio de 44,2 meses al primer parto. A partir de estos datos se ha podido calcular que, solo por estos conceptos, se están perdiendo 2 terneros potenciales y más de un ciclo lactacional en la vida útil de la vaca lechera.

Es por eso que el primer problema que debe resolverse es la atención que debe y tiene que dársele al ganado en desarrollo, ya que define la eficiencia productiva y económica en cualquier explotación pecuaria. El objetivo esencial a alcanzar es la disminución del periodo pre-reproductor de la hembra, para su rápida incorporación a la reproducción con un peso y un desarrollo corporal y genital adecuados (Alvarez, 1999).

Los resultados alcanzados en las investigaciones anteriores sentaron pautas para que la crianza de las hembras en desarrollo que se originan en el rebaño de la vackería de Indio Hatuey (manejadas según las condiciones de la ganadería comercial existentes en Cuba), se realice bajo condiciones de silvopastoreo, específicamente en potreros de gramíneas asociadas en el 100 % del área con leucaena, ya que aunque los resultados de edad y peso a la incorporación a la reproducción aún no son los esperados para esta categoría animal, al menos el nivel de alimentación que se origina en este sistema evita pérdidas de peso en los períodos más críticos del año y propicia resultados productivos superiores a los que se obtienen en las condiciones de producción actuales.

Por todo lo planteado anteriormente, este trabajo tuvo como propósito:

1. Validar la potencialidad del sistema asociado en condiciones de producción mediante la cría, desde los 12 meses hasta la incorporación a la reproducción, de hembras mestizas 5/8 H x 3/8 C provenientes de rebaños comerciales, para el rejuvenecimiento del rebaño de Indio Hatuey.
2. Seguir la evolución del pastizal asociado, así como sus indicadores productivos y de calidad.
3. Realizar un balance financiero del sistema, para estimar los principales indicadores de sostenibilidad y estabilidad a través del tiempo.

V.1.2. Materiales y Métodos

V.1.2.1. Condiciones climáticas

El período de evaluación comenzó en enero de 1999 y terminó en enero del 2000 (12 meses), donde se reportó un total de precipitaciones de 1 221,1 mm, con 282,1 en la época poco lluviosa y 939 mm en las lluvias. Este comportamiento de las precipitaciones es considerado como bajo, principalmente lo reportado en la época lluviosa, ya que en esta localidad anualmente se supera la cifra anual de 1 270 mm, con la mayoría de los años por encima de 1 300 mm.

Con respecto a las temperaturas, la media en la época poco lluviosa fue de 21,8ºC, mientras que en la lluvia fue de 29,75, cifras cercanas a lo reportado por la Estación Meteorológica de la localidad como sus medias anuales.

V.1.2.2. Procedimiento

Se siguió la evolución de los animales en lo que a ganancias de peso vivo se refiere y también se estudiaron las fluctuaciones en el rendimiento del pastizal y las arbóreas. De forma periódica se monitoreó el comportamiento general en pastoreo y el manejo animal, y se asesoró en la estrategia de poda en la época de seca.

El pastoreo se realizó con 36 animales 5/8 H x 3/8 C, que se incorporaron al sistema con muy bajo peso corporal (120 kg como promedio), en un área aledaña a la vackería, que abarcó 12 ha y estaba dividida en 10 cuartones con cerca tradicional de alambre de púas.

46
La leucaena se sembró en mayo del 1998 con un marco de siembra de una planta cada 18 m² (6 m entre hileras y 3 m entre plantas), lo que equivale a una densidad de 555 árboles/ha, y siguiendo los procedimientos de los experimentos descritos anteriormente. Al comienzo del pastoreo la altura promedio de las plantas era de 200 cm, ya que esa fue la altura que se fijó para dar por establecida la arbórea, por lo que se decidió comenzar la poda desde el mismo inicio del pastoreo a una altura de 150 cm.

La composición del pastizal fue básicamente de pastos cultivados (70 %), sembrados también en la época lluviosa de 1998, con predominio de la guinea likoni; mientras que los pastos naturales abarcaron el 20 % del área.

La carga global fue de 3 animales/ha, lo que representó 0,72 UGM/ha al inicio de la explotación del sistema y alrededor de 1,71 al final de este.

El pastoreo comenzó a inicios de enero de 1999 y durante la época poco lluviosa la rotación de los potreros fue de 50 días, con 5 días de estancia y 45 de reposo. Al comenzar la lluvia se acortó el tiempo de reposo hasta 36 días y la estancia fue de 4 días.

Los animales dispusieron de agua y sales minerales en una corraleta diseñada al efecto, las 24 horas del día. No se recibió ningún tipo de suplementación energética o proteica.

V.1.3. Resultados y Discusión

Los datos de disponibilidad de los pastos y la oferta de leucaena por poda y ramoneo se muestran en el cuadro V.1.3.1.

De nuevo se encontró la tendencia a una menor disponibilidad de pastos en la época poco lluviosa (P<0,05), lo típico de los sistemas de pastoreo donde no se fertiliza en la lluvia ni se aplica riego en la seca, y coincidente con los resultados anteriores de las investigaciones de esta tesis. No obstante, la oferta diaria de pastos para este período seco fue cercana a los 11 kg de MS/100 kg de PV/día al inicio (seca 1999) y superior a los 7 kg al final (seca 1999-2000), suficiente para animales que comenzaron el pastoreo con 120 kg de peso vivo como promedio y que al final pesaron 286 kg, por lo que su capacidad de ingestión en pastoreo nunca rebasó los 7 kg de MS/día (Anon, 2000). A lo planteado se suma que por concepto de poda y ramoneo de árboreas también recibieron un valioso material proteico, con valores que oscilaron entre los 0,295 y 0,133 kg de MS/100 kg de PV/día.

En el período lluvioso la oferta de pastos fue alta (16,85 kg de MS/100 kg de PV/día), incluso superior a la recomendada en vacas lecheras en pastoreo para lograr una selección adecuada del estrato de mayor calidad, así como la disponibilidad de leucaena en ramoneo (no se podó en esta época), la cual fue mayor que 0,285 kg de MS/100 kg de PV/día. Esto último estuvo influenciado por el rebrote de los árboles podados en la época poco lluviosa, aspecto señalado y discutido anteriormente.

Cuadro V.1.3.1. Oferta diaria (kg de MS/100 kg de PV/día) promedio y por época.

<table>
<thead>
<tr>
<th>Indicadores</th>
<th>Período del ciclo</th>
<th>Seca 1999</th>
<th>Lluvia 1999</th>
<th>Seca 1999-00</th>
<th>ES±</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oferta total</td>
<td>13,56</td>
<td>11,29ᵇ</td>
<td>17,14ᵃ</td>
<td>7,37ᵇ</td>
<td>1,794ᵃ</td>
</tr>
<tr>
<td>Oferta de pastos</td>
<td>13,29</td>
<td>10,99ᵇ</td>
<td>16,85ᵇ</td>
<td>7,24ᵇ</td>
<td>1,791ᵇ</td>
</tr>
<tr>
<td>Oferta de arbóreas</td>
<td>0,262</td>
<td>0,295ᵃ</td>
<td>0,287ᵃ</td>
<td>0,133ᵇ</td>
<td>0,051***</td>
</tr>
<tr>
<td>Por ramoneo</td>
<td>0,158</td>
<td>0,030ᵇ</td>
<td>0,287ᵃ</td>
<td>0,038ᵇ</td>
<td>0,012***</td>
</tr>
<tr>
<td>Por poda</td>
<td>0,104</td>
<td>0,265</td>
<td>--</td>
<td>0,095</td>
<td>-</td>
</tr>
</tbody>
</table>

Valores con superíndices desiguales en la horizontal difieren significativamente a P<0,05 (Duncan, 1955)
*P<0,05 ***P<0,001

Los resultados obtenidos en esta etapa de validación de tecnologías demostraron que también en condiciones de producción, sin un control riguroso por parte del investigador o los técnicos acerca de los aspectos del manejo animal y del pastizal, se pueden obtener ganancias de peso vivo superiores a los 450 g diarios y, de esta forma, incorporar a las hembras con alrededor de 286 kg (cuadro V.1.3.2).

No obstante, la edad a la que se incorporaron los animales a la reproducción sigue siendo alta (24 meses), mientras que el peso es bajo. En este sentido, García (1990) encontró que en ganado Mambí de la EPG de Matanzas, en condiciones de pastoreo con riego y fertilización, la edad de incorporación fue de 20,3 meses con 322 kg de peso, ganancia media diaria de 530 g/día y una edad al primer parto de 32 meses. Por su parte López et al. (1996), en estimaciones de la edad al primer parto tanto en el proyecto Siboney como en el Mambí.
de Cuba, mostraron valores entre 31–34 meses (incorporación a los 20-22 meses); sólo en el proyecto Cebú-Lechero Cubano estos valores fueron superiores (35 meses).

Cuadro V.1.3.2. Resultados de la crianza de hembras en condiciones de producción.

<table>
<thead>
<tr>
<th>Indicadores</th>
<th>Resultados</th>
<th>DS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edad de incorporación al sistema (meses)</td>
<td>11,99</td>
<td>0,59</td>
</tr>
<tr>
<td>Peso de incorporación al sistema (kg)</td>
<td>120</td>
<td>4,24</td>
</tr>
<tr>
<td>Edad de incorporación a la reproducción (meses)</td>
<td>23,99</td>
<td>1,47</td>
</tr>
<tr>
<td>Peso de incorporación a la reproducción (kg)</td>
<td>286,6</td>
<td>8,4</td>
</tr>
<tr>
<td>Ganancia obtenida (kg)</td>
<td>166,6</td>
<td>11,03</td>
</tr>
<tr>
<td>Ganancia media acumulada (g/animal/día)</td>
<td>455</td>
<td>13,97</td>
</tr>
<tr>
<td>Ganancia media de la época poco lluviosa (g/animal/día)</td>
<td>420</td>
<td>*</td>
</tr>
<tr>
<td>Ganancia media de la época lluviosa (g/animal/día)</td>
<td>490</td>
<td>2,32</td>
</tr>
</tbody>
</table>

Valores desiguales en negrita difieren significativamente a P<0,05 ***P<0,001

Nuestros resultados de menor peso y edad avanzada a la incorporación tienen su explicación en el bajo peso corporal que presentaron los animales (120 kg de peso, con 12 meses de edad) cuando iniciaron la etapa de pastoreo en el sistema silvopastoril, lo que demuestra que, en condiciones comerciales, hay un gran vacío tecnológico en la etapa de crianza de las hembras, desde que ocurre el destete hasta el pase a la categoría de añojas, aspecto ya tratado anteriormente en la discusión de los resultados experimentales.

Al respecto, López et al. (1994) señalaron que el peso de las hembras Siboney y su primer interset hasta un año es de 164-166 kg, o sea, 44-46 kg mayor que el de los animales utilizados por nosotros. Con una añoja de ese peso y las ganancias de 455 g diarios, obtenidas aquí, se podría lograr un peso de incorporación de 287,5 kg a los 21 meses de edad, o de 301 kg a los 22 meses.

Es por eso que consideramos que los resultados obtenidos en esta etapa son positivos. Se conoce que en las condiciones actuales (MINAGRI, 2000, Informe de Reunión de Subdelegados de Ganadería), los animales Siboney que pastan gramíneas en monocultivo demoran alrededor de 36 meses para fecundarse, con un peso de alrededor de 300 kg. Esto coincide con lo señalado por Armas (1979) y López (1998) que, aun en momentos anteriores al período de crisis económica que atraviesa el país, reportaron datos que situaron a los animales de genotipos Holstein x Cebú con edades de incorporación a la reproducción entre los 27 y 34 meses y pesos que fluctuaban entre los 290 y los 306 kg. No obstante, aun queda mucho por investigar en las fases más tempranas de desarrollo de las hembras de reemplazo, o sea, desde el destete hasta su conversión a añojas para alcanzar la meta propuesta por Calvera y Morales (2000) y Suárez, Pérez y Evora (2001), los cuales recomiendan incorporar las novillas de esta raza con alrededor de 325 kg de peso y 18 meses, para alcanzar el primer parto a los 27 meses, lo que se logra con ganancias entre 550 y 600 g/animal/día.

Los animales que se incorporaron a la reproducción fueron inseminados a medida que presentaron celos, lográndose un intervalo incorporación-cubrición promedio de 43 días.

La implementación de la tecnología del silvopastoreo para la cría de hembras de reemplazo en condiciones de producción demostró que es posible, con la utilización mínima de insumos, obtener ganancias adecuadas en pastoreo y pesos/edades a la incorporación aceptables para las condiciones actuales de la ganadería cubana.

V.2. Factibilidad económica de la cría en varios ciclos de producción

La ganadería cubana ha experimentado en los últimos tiempos un proceso de cambio dirigido a la puesta en marcha de sistemas basados, fundamentalmente, en el consumo de pastos y otros recursos locales, en los que las leguminosas arbóreas han representado un importante papel, por las posibilidades que ofrecen de mejorar la calidad de la dieta vacuna con una menor inversión de recursos económicos; estas son utilizadas con éxito en la producción de carne a escala experimental y en empresas ganaderas del país (Castillo, Ruiz, Puentes y Hernández, 1996).

Las ventajas socioeconómicas de estos sistemas agroforestales han sido planteadas por Budowski (1997), quien destaca la disminución de importaciones de insumos y/o de los gastos por concepto de productos exógenos, como una de las más importantes. Este aspecto es de gran interés si se considera la escasez de estudios realizados, hasta la fecha, que demuestren la influencia beneficiosa de las leguminosas en la reducción de los costos y el mejoramiento de la eficiencia económica en la producción ganadera cuando se usan en Asociaciones en el 100 % del área de pastoreo, por lo que, teniendo en cuenta que el productor es el eslabón primario de la cadena de producción, cobra especial interés disponer de información económica con
vistas a seleccionar sistemas productivos viables, tanto desde el punto de vista técnico como económico, que posibiliten crear condiciones para un proceso de comercialización en el mercado interno y en el de divisas.

Desde el punto de vista de su rentabilidad, diversos autores nacionales han señalado las ventajas económicas de utilizar *L. leucocephala* y otras leguminosas en sistemas para alimentar el ganado vacuno en combinación con las gramíneas (Iglesias, 1996; Castillo, Ruiz, Febles, Crespo, Galindo, Chongo, y Hernández, 2000; Cino, Sierra, Martín y Valdés, 2001); sin embargo, aún resultan escasos los estudios sobre la influencia en la reducción de los costos y el mejoramiento de la eficiencia económica con la inclusión de las leguminosas en el 100 % del área pastoril (Reinoso, 2001).

En este contexto se plantea que en la evaluación de la eficiencia económica de cualquier sistema de producción animal se debe contemplar el análisis de ciertos indicadores técnicos y de la situación financiera, entre los que se destacan la productividad por animal y por unidad de superficie, los ingresos y los costos totales y por hectárea, el costo por peso, etc., los cuales pueden ser decisivos en un análisis de la sostenibilidad de la finca (Belli, Dietmar, Charles y Kamhing, 1985; Jordán, Reyes, Valdés, Milera, Ruiz y Guevara, 1995).

Por lo anteriormente planteado, el presente análisis tuvo como objetivo realizar un balance financiero del sistema analizado anteriormente, para estimar los principales indicadores de sostenibilidad y estabilidad a través del tiempo.

Para la realización de este estudio se tomaron los registros de gastos e ingresos de la finca pecuaria Indio Hatuey, organizados por centros de costo en la Subdirección de Economía de la Estación y la Resolución P-92-99 (Anon, 1999a) del Ministerio de Finanzas y Precios que regula el precio en pie de la categoría de animales utilizados. Se analizaron los 4 años que lleva en explotación el sistema (1998-2001), con el objetivo de comprobar su factibilidad económico-financiera a mediano plazo.

Las mediciones y cálculos realizados fueron las siguientes:

- Gastos de inversión del sistema
- Gastos totales durante el ciclo de explotación
- Valor de la producción total y por hectárea
- Costos totales y por hectárea
- Costo por peso producido
- Costo por animal
- Costo por kg de PV
- Ganancias económicas
- Relación beneficio/costo

Los resultados obtenidos durante el primer año de establecimiento del Silvopastoreo (año cero) nos revelan que sólo se obtienen ingresos por ventas, en el caso de que se siembren cultivos de ciclo corto, como el frijol, aparejados a las hileras de la leucaena, lo que representó en este caso 58 210 pesos, a un precio de 3,50 pesos el kilogramo y una producción aproximada de 1 663,2 kg en 3 ha (Cuadro V.2.1). Consideramos que esta estrategia es adecuada para ayudar a recuperar la inversión inicial en estos sistemas, donde hay que esperar entre 6 y 12 meses para comenzar la explotación de las arbóreas, período que a veces se alarga por dificultades en la adquisición de insumos como las cercas y los postes.

Ya en 1988, Ayarza, Dextre y Sánchez se refirieron a la importancia de la siembra de cultivos intercalados en el momento de la siembra de los pastos, ya que aumenta la eficiencia del uso de la tierra y se amortizan los gastos por concepto de siembra y labores de limpieza.

En este sentido, Levas (1996) planteó la necesidad de establecer modelos de producción más eficientes desde el punto de vista económico y productivo, en los que disminuya el ciclo productivo y se recupere en menor tiempo el capital invertido; así se obtendrán ganancias satisfactorias a bajo costo. Por otra parte, con la inclusión de los cultivos de ciclo corto se garantiza el establecimiento de la arbórea, ya que los campesinos se sienten doblemente motivados a realizar la limpieza manual de los surcos sembrados y cuando se cosechan los cultivos acompañantes, ya la leucaena alcanzó una altura adecuada para desarrollarse y crecer por sí misma.

Dichos datos coinciden con lo señalado por Simón, Lamela, Esperance, Reyes, Hernández, Sánchez y Cruz (2000), cuando en condiciones de producción, en la provincia La Habana, establecieron cultivos tales como yuca, maíz, frijol, pepino, etc. Estos produjeron adecuados ingresos para los finqueros mientras se establecía el sistema y, a su vez, contribuyeron a la amortización de la inversión inicial. También se avalan con los resultados de Padilla, Ruiz, Cino y Curbelo (1999), los que recuperaron entre el 61 y 77 % de los costos de establecimiento de la leucaena, cuando intercalaron maíz o soya entre las hileras de esta.

No obstante, durante el primer año de explotación (el cual se analizó en el subcapítulo anterior) aún no se produjeron ganancias en el sistema, ya que hubo una pérdida de 162,7 pesos/ha que se recuperó en los años
posteros cuando el complejo árboles-pastos estaba totalmente establecido y los ingresos provenían de las ventas de los animales, las cuales se realizaban anualmente en un ciclo de venta y compra continuo y duración de la crianza de un año como máximo.

Cuadro V.2.1. Valor de la producción animal y algunos indicadores de ingresos y costos de producción por año (pesos).

<table>
<thead>
<tr>
<th>Indicador</th>
<th>Años</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Valor de la producción total</td>
<td>5821,2</td>
</tr>
<tr>
<td>Valor de la producción por ha</td>
<td>485,1</td>
</tr>
<tr>
<td>Gastos totales</td>
<td>7774,7</td>
</tr>
<tr>
<td>Gastos por ha</td>
<td>647,9</td>
</tr>
<tr>
<td>Ganancia económica por ha</td>
<td>(1953,5)</td>
</tr>
<tr>
<td>Ganancia económica por ha</td>
<td>(162,7)</td>
</tr>
<tr>
<td>Ganancia económica por animal</td>
<td>-----</td>
</tr>
<tr>
<td>Costo por animal</td>
<td>-----</td>
</tr>
<tr>
<td>Costo por kg de PV</td>
<td>-----</td>
</tr>
<tr>
<td>Costo por peso producido</td>
<td>-----</td>
</tr>
<tr>
<td>Relación beneficio/costo</td>
<td>-----</td>
</tr>
</tbody>
</table>

Nota: Los ingresos en el primer año están constituidos por la venta de frijoles negros, y a partir del segundo año por la venta de novillas de segunda.

Nótese que, a partir del segundo año, se alcanzó una relación beneficio/costo favorable, con valores de 1,39 en el cuarto año, lo que está íntimamente asociado con la obtención de un costo por peso de 0,71 centavos e ingresos que permitieron dejar ganancias por hectárea y animal superiores a 530 y 180 pesos, respectivamente. Un aspecto importante a tener en cuenta en este análisis es que apenas se incurrió en gastos por concepto de alimentación exógena (solo se ofreció agua y sales minerales), la cual puede representar, según Hahen (1998) y Reinoso (2001), entre el 61,7 y 71,1 % de los costos variables de producción en sistemas con rebaños mestizos.

También Urdaneta (1996) señaló que con el empleo de la leucaena en pastoreo se pueden reducir los gastos por concepto de compra de concentrados, lo que origina que los costos por alimentos balanceados se reduzcan en 2,5 veces en comparación con los de sistemas donde no se emplean las arbóreas.

El elemento de mayor incidencia en los costos fue la compra de animales (61-63 %). Al respecto Celis (1992) y Navarro (1994) señalan que este rubro es un elemento fuerte del costo de producción de carne, que puede alcanzar hasta un 75% de los costos operacionales, y recomienden emplear sistemas que garanticen el suministro de una parte o de la totalidad del rebaño y elevar la productividad con vistas a disminuir su efecto en los costos.

Nuestro estudio mostró que el sistema evaluado obtuvo indicadores satisfactorios, por lo que nos permite afirmar que la alternativa de producción propuesta en esta tesis es financieramente rentable y refleja las posibilidades de obtener resultados económicos favorables en sistemas de bajos insumos, de posible explotación en las condiciones productivas actuales del país.
Conclusiones

1. Los Sistemas Silvopastoriles estudiados para la crianza de bovinos en desarrollo demostraron su valía, ya que en diferentes épocas del año se obtuvieron ganancias en ciclos superiores a los 400 g/animal/día. Esto evidencia que con sistemas de producción similares a los estudiados, los animales jóvenes pudieran ser mantenidos sin suplementación exógena y sin pérdidas de peso vivo durante el período poco lluvioso.

2. En los sistemas de crecimiento-ceba se alcanzaron ganancias acumuladas promedio entre 492 y 623 g por animal/día, con pesos finales de 357-414 kg a una edad de 24-28 meses.

3. El ganado Cebú confirmó lo reportado en Cuba y otras latitudes, acerca de su buen comportamiento en sistemas de ceba basados solo en pastoreo, mientras que los machos mestizos demostraron que es factible su ceba en sistemas de Asociación de árboles leguminosos (leucaena) en toda el área, sin el uso de suplementos externos, excepto sales minerales, ya que se alcanzan pesos finales superiores a 355 kg, sin pérdidas de peso vivo durante el período de engorde.

4 La cría de hembras mestizas de reemplazo en condiciones de silvopastoreo propició ganancias superiores a los 441 g diarios (máximas de 524 g), con pesos a la incorporación a la reproducción que variaron entre 280 y 310 kg, aunque la edad fue alta (23-27 meses), lo que estuvo influenciado por el peso alcanzado en los sistemas previos a la incorporación a estos estudios, que estuvo por debajo de los 182-220 kg recomendados por las tecnologías de crianza de animales en desarrollo.

5 En todos los experimentos se evidenció una alta producción de biomasa, con rendimientos que fluctuaron entre 7,37 y 14,58 kg de MS/100 kg de PV/día para la época poco lluviosa y entre 12,35-30,2 kg para la lluviosa, en tanto las gramíneas asociadas a los árboles mantuvieron tenores de proteína superiores a 9 %.

6. La oferta diaria de leucaena en los Sistemas Silvopastoriles estudiados fue muy variable, en dependencia del tamaño de los animales y el manejo a que fueron sometidos los árboles (ramoneo o poda). Así, se encontraron valores entre 0,115 y 2,40 kg de MS/100 kg de PV/día en la época poco lluviosa y de 0,284-2,50 kg para la lluviosa.

7 La Leucaena demostró una alta persistencia en las condiciones de manejo a que fue sometida en los diferentes experimentos, lo que la reafirmó como una planta altamente resistente al pastoreo-ramoneo y a la poda escalonada en la época poco lluviosa.

8 El sistema de Asociación en toda el área para la cría de hembras de reemplazo en condiciones de producción aportó ganancias desde el punto de vista económico, con aceptables valores en la relación beneficio/costo y en el costo por peso y por kilogramo de peso vivo producido.
Recomendaciones

1. Implementar el uso del sistema de **Asociación de árboles leguminosos en toda el área** y/o **Banco de Proteína** en las explotaciones ganaderas que no cuentan con los insumos externos necesarios para la ceba en pastoreo, ya que se logran ganancias entre 492-623 g/animal/día (en dependencia del genotipo utilizado), con una edad final de 25-28 meses.

2. Utilizar las tecnologías de **Banco de Proteína** y/o **Asociación de árboles leguminosos en toda el área** en los rebaños de hembras en desarrollo que se crían en condiciones de cero o bajos insumos externos, por la alta producción de biomasa verde que se genera y las ganancias diarias que se obtienen (441-525 g/animal/día).

3. Profundizar en los estudios de poda de las arbóreas (época, altura, inicio, etc.) y en los de diseño de sistemas de pastoreo con bajos insumos externos, con el objetivo de homogeneizar los resultados obtenidos y proponer variantes asequibles al productor.

4. Diseñar nuevas investigaciones con animales jóvenes en silvopastoreo con vistas a obtener ganancias superiores, contemplando estrategias de suplementación de ser necesario, para lograr sistemas o tecnologías más integrales, sostenibles y competitivas.

5. Tomar en consideración los aspectos metodológicos y los resultados alcanzados en la confección de materiales didácticos para la enseñanza pre y posgraduada.
Referencias

3. ALBERTI, P. SAÑUDO, C. LAHOZ, F. JAIME, L. y TENA, R. 1988. Características de la canal y de la calidad de la carne de terneros cebados con dietas forrajeras y suplementados con distintas cantidades de pienso. ITEA, 76:3
7. ALFONSO, A.; VALDES, L. R. y DUQUESNE, P. 1984. Evaluación comparativa de tres gramíneas en pastoreo. II. Con años y cargas 2; 3.3 y 5 animales/ha. Pastos y Forrajes. 7:381
18. ANON. 2000b. Tablas de valor nutritivo y requerimientos para el ganado bovino. Pastos y Forrajes 23:105
24. AVILA, M.1995. Sistemas silvopastoriles una alternativa para mejorar la calidad de vida de pequeños y medianos productores. Agroforestería en las Américas. 8: 4

31. BORTONE, E; MORRILL, J. L; STEVENSON, J. S y FEYERHERM, A. M. 1994. Growth of heifers fed 100 or 115 % of National Research Council requirements to 1 year of age and then changed to another treatment. Journal of Dairy Science. 77: 270

37. CAMERÓN, A. E IBRAHIM, M. 1996. Bancos de proteína de Poró (Erythrina poeppigiana) y Madero negro (Gliricidia sepium). Agroforestería en la Américas. 8: 31-52

48. CASTILLO, E; RUIZ, T. E; FEBLES, G; CRESPO, G; GALINDO, JUANA; CHONGO, BERTHA y HERNÁNDEZ, J. L. 2000. Efecto de la inclusión de la Leucaena en el 100% del área de pastos naturales en el comportamiento de machos bovinos. Rev. Cubana de Cienc. Agrícola 34:309

49. CASTILLO, E; RUIZ, T. E; FEBLES, G; RAMÍREZ, R; PUENTES, R; BERNAL, G y DÍAZ, L. E. 1992. Producción de carne bovina basada en Panicum maximum Jacq., dos proporciones de Leucaena leucocephala y diferentes cargas. Rev. cubana de Cienc. agric. 26:255

56. CHACÓN, E; FOSSI, H; MARCHENA, H; DIAZ,J y ARMAS, S. 2000. Estudios comparativos sobre la respuesta animal con bloques multinutricionales que incorporan Leucaena (Leucaena leucocephala) y el banco de leguminosa arbustiva. En: Memorias. IV Taller Internacional Silvopastoril “Los árboles y arbustos en la ganadería tropical” EEPF "Indio Hatuey”. 29 Nov.-1 Dic. p 254

57. CHAO, LAURA; VALDES, L. R. y DUQUESNE, P. 1982. Uso de las leguminosas o suplementación para la producción de carne. II. Ciclo de evaluación. Pastos y Forrajes 5:223

65. CORVISON, R; MONPIE, J; VAZQUEZ, R; PEREIRA, E; BRITO, LIDIA; RODRIGUEZ, NIDIA y RIVERO, F. 1991. Caracterización del crecimiento en la hembra 15/16 Holstein x 1/16 Cebú desde los 7 hasta los 688 días de edad. Revista de Producción Animal 6:163

80. FOSTER, A. H y BLIGHT, G. W. 1983. Use of Leucaena leucocephala to supplement yearling and two years old cattle grazing spear grass in southeast Queensland. Tropical Grasslands. 17: 170

85. GARCIA, R. 1990. Comportamiento productivo y reproductivo del mambí de Cuba en la EPG de Matanzas. Seminario Científico Internacional. XXV Aniversario del Instituto de Ciencia Animal ICA. La Habana, Cuba. p 140

88. GOMEZ, MARIA ELENA; MURGUEITO, E; MOLINA, H; MOLINA, H; MOLINA, E y MOLINA, J. P. 1995 Matarratón (Gliricidia sepium). En: Árboles y arbustos forrajeros utilizados en la alimentación animal como fuente proteica. CIPAV, Cali, Colombia. 127 p.

97. HERNANDEZ, A; PEREZ, J. M; BOSCH, D; RIVERO, L; CAMACHO, E; RUIZ, J; JAIME, E; MARSON, R; OBREGON, A; TORRES, J. M; GONZALEZ, J. E; ORELLANA, R; PANEQUE, J; MESA, A; FUENTES, ENMA; DURAN, J. E; PENA, J; CID, G; PONCE, D; HERNANDEZ, MAYDA; FERNANDEZ, LIVIA; GARCES, N; MORALES, MARISOL; SUAREZ, ALBIA; MARTINEZ, E. y RUIZ, J. M. 1999. Clasificación genéctica de los suelos de Cuba. Instituto de Suelos. Ministerio de la Agricultura. AGRINFOR. Ciudad de la Habana, Cuba. 64 pp.

100. HERNANDEZ, C. A; ALFONSO, A. y DUQUESNE, P. 1988. Banco de proteína de Neonotonia wightii y Macroptilium atropurpureum como complemento al pasto natural en la ceba de bovinos. Pastos y Forrajes. 11:74

110. HERNÁNDEZ, I; SIMÓN L Y DUQUESNE, P. 2001 Evaluación de las arbóreas Albizia lebbeck, Bauhinia purpurea y Leucaena leucocephala en asociación con pasto bajo condiciones de pastoreo Pastos y Forrajes 24:241

111. HERNÁNDEZ, MARTA y CACERES, O. 1983. Guinea Likoni. Pastos y Forrajes. 6:1

PADILLA, C; RUIZ, T; R; CINO, DELIA, M y CURBELO, F. 1999. Producción de granos y forrajes mediante el intercalamiento de cultivos temporales durante el establecimiento de Leucaena y la recuperación de Cynodon nlemfuensis. Revista. Cubana. Cienc. Agríc. 33:331

PEREIRO, A. M. 1985. Utilización del pastoreo restringido de glycine (Neonotonia wightii) como suplemento a vacas lecheras de mediano potencial alimentadas a base de pastos o forrajes conservados. Tesis presentada en opción al grado de Candidato a Doctor en Ciencias Veterinarias. ISCAH-ICA, La Habana. 202 pp

PEREZ, J. D; ZAPATA, G y SOSA, E. 1995. Utilización del ramón (Brosimum alicastrum Swartz) como forraje en la alimentación de ovinos en crecimiento. Agroforestería de las Américas. 7:17

188. ROSETE, A y ZAMORA, A. 1990. Alimentación de novillas. En: Temas sobre el ganado lechero. EDICA, La habana, Cuba. p. 27

204. SCHROTH, G; KOLBE, DOROTHEE; PITY, B y ZECH, W. 1996. Root system characteristics with agroforestry relevance of nine leguminous tree species and a spontaneous fallow in a semi-deciduous rainforest area of West Africa. Forest Ecology and Management 84: 199

236. VALDES, G; JORDAN, H; CRESPO, G; CASTILLO, E; CINO, D. M; FEBLES, G; GARCIA-TRUJILLO, R; MOLINA, A; REYES, J y SENRA, A. 1995. Valoración de los resultados de producción de pastos, leche, y carne en sistemas de Pastoreo Racional Voinis y rotacional. En: Nutrición, fisiología y manejo de rumiantes. Resúmenes del Seminario Científico Internacional XXX Aniversario del Instituto de Ciencia Animal. 25-27 octubre. ICA. La Habana, Cuba. p. 97

249. ZAMORA, A. 1989. Tecnología integral de crianza de hembras desde el nacimiento hasta el parto con 475 kg en pastoreo con suplementación. Informe Final de Contrato de Investigación. Programa para el desarrollo de tecnologías integrales de producción de carne y leche. ICA. La Habana, Cuba. 15 p. (Mimeo).

Anexos
Tablas de balances alimentarios

Experimento III.1 (Anexo I)

Tabla 1. Balance alimentario del tratamiento control y Banco de Proteína para la época lluviosa.

<table>
<thead>
<tr>
<th>Aporte de los nutrientes</th>
<th>Consumo (kg de MV)</th>
<th>Consumo (kg de MS)</th>
<th>EM (Mcal)</th>
<th>PB (g)</th>
<th>Ca (g)</th>
<th>P (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pasto guinea likoni</td>
<td>21,8</td>
<td>7,0</td>
<td>14,08</td>
<td>525</td>
<td>38,6</td>
<td>16,8</td>
</tr>
<tr>
<td>Total</td>
<td>21,8</td>
<td>7,0</td>
<td>14,08</td>
<td>525</td>
<td>38,6</td>
<td>16,8</td>
</tr>
<tr>
<td>Requerimientos</td>
<td>-</td>
<td>-</td>
<td>18,5</td>
<td>769</td>
<td>23,5</td>
<td>17,7</td>
</tr>
<tr>
<td>Diferencia</td>
<td></td>
<td></td>
<td>-4,42</td>
<td>-244</td>
<td>15,1</td>
<td>-0,9</td>
</tr>
</tbody>
</table>

Nota: Potencial de producción- 608 g

Tabla 2. Balance alimentario de la Asociación para la época lluviosa.

<table>
<thead>
<tr>
<th>Aporte de los nutrientes</th>
<th>Consumo (kg de MV)</th>
<th>Consumo (kg de MS)</th>
<th>EM (Mcal)</th>
<th>PB (g)</th>
<th>Ca (g)</th>
<th>P (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pasto guinea likoni</td>
<td>12,54</td>
<td>4,05</td>
<td>8,1</td>
<td>304</td>
<td>22,3</td>
<td>9,7</td>
</tr>
<tr>
<td>Glycine</td>
<td>7,3</td>
<td>2,08</td>
<td>4,8</td>
<td>397</td>
<td>34,5</td>
<td>5,2</td>
</tr>
<tr>
<td>Leucaena</td>
<td>2,78</td>
<td>0,87</td>
<td>1,99</td>
<td>178,2</td>
<td>19,9</td>
<td>2,13</td>
</tr>
<tr>
<td>Total</td>
<td>22,62</td>
<td>7</td>
<td>14,89</td>
<td>879,2</td>
<td>76,7</td>
<td>17,03</td>
</tr>
<tr>
<td>Requerimientos</td>
<td>-</td>
<td>-</td>
<td>18,5</td>
<td>769</td>
<td>23,5</td>
<td>17,7</td>
</tr>
<tr>
<td>Diferencia</td>
<td>-</td>
<td>-</td>
<td>-3,61</td>
<td>110</td>
<td>53,2</td>
<td>-0,67</td>
</tr>
</tbody>
</table>

Nota: Potencial de producción- 643 g

Experimento III.1 (Anexo II)

<table>
<thead>
<tr>
<th>Aporte de los nutrientes</th>
<th>Consumo (kg de MV)</th>
<th>Consumo (kg de MS)</th>
<th>EM (Mcal)</th>
<th>PB (g)</th>
<th>Ca (g)</th>
<th>P (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pasto guinea likoni</td>
<td>23,57</td>
<td>7,54</td>
<td>15,2</td>
<td>566</td>
<td>41,5</td>
<td>18,1</td>
</tr>
<tr>
<td>Total</td>
<td>23,57</td>
<td>7,54</td>
<td>15,2</td>
<td>566</td>
<td>41,5</td>
<td>18,1</td>
</tr>
<tr>
<td>Requerimientos</td>
<td>-</td>
<td>-</td>
<td>15,1</td>
<td>666</td>
<td>21,4</td>
<td>16,5</td>
</tr>
<tr>
<td>Diferencia</td>
<td>-</td>
<td>-</td>
<td>0,1</td>
<td>-101</td>
<td>20,1</td>
<td>1,6</td>
</tr>
</tbody>
</table>

Nota: Potencial de producción- 270 g

Tabla 4. Balance alimentario de la Asociación para la época poco lluviosa.

<table>
<thead>
<tr>
<th>Aporte de los nutrientes</th>
<th>Consumo (kg de MV)</th>
<th>Consumo (kg de MS)</th>
<th>EM (Mcal)</th>
<th>PB (g)</th>
<th>Ca (g)</th>
<th>P (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pasto guinea likoni</td>
<td>14,7</td>
<td>4,54</td>
<td>9,4</td>
<td>441</td>
<td>27,3</td>
<td>10,9</td>
</tr>
<tr>
<td>Glycine</td>
<td>4,7</td>
<td>1,33</td>
<td>3,1</td>
<td>253</td>
<td>22,0</td>
<td>3,3</td>
</tr>
<tr>
<td>Leucaena</td>
<td>7,5</td>
<td>2,33</td>
<td>5,2</td>
<td>477</td>
<td>53,5</td>
<td>5,8</td>
</tr>
<tr>
<td>Total</td>
<td>26,9</td>
<td>8,19</td>
<td>17,7</td>
<td>1170</td>
<td>102,7</td>
<td>20,0</td>
</tr>
<tr>
<td>Requerimientos</td>
<td>-</td>
<td>-</td>
<td>17,5</td>
<td>743</td>
<td>23,7</td>
<td>18,2</td>
</tr>
<tr>
<td>Diferencia</td>
<td>-</td>
<td>-</td>
<td>0,3</td>
<td>427</td>
<td>79,0</td>
<td>1,8</td>
</tr>
</tbody>
</table>

Nota: Potencial de producción- 430 g
Experimento III.2 (Anexo III)

Tabla 5. Balance alimentario de la Asociación para la época lluviosa.

<table>
<thead>
<tr>
<th>Aporte de los nutrientes</th>
<th>Consumo (kg de MV)</th>
<th>Consumo (kg de MS)</th>
<th>EM (Mcal)</th>
<th>PB (g)</th>
<th>Ca (g)</th>
<th>P (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pasto guinea likoni</td>
<td>10,99</td>
<td>3,39</td>
<td>7,05</td>
<td>329,4</td>
<td>20,4</td>
<td>8,1</td>
</tr>
<tr>
<td>Glycine</td>
<td>0,7</td>
<td>0,2</td>
<td>0,5</td>
<td>38</td>
<td>3,3</td>
<td>0,5</td>
</tr>
<tr>
<td>Leucaena</td>
<td>3,22</td>
<td>1,0</td>
<td>2,34</td>
<td>208</td>
<td>23,2</td>
<td>2,6</td>
</tr>
<tr>
<td>Total</td>
<td>14,91</td>
<td>4,59</td>
<td>9,89</td>
<td>575,4</td>
<td>46,9</td>
<td>11,2</td>
</tr>
<tr>
<td>Requerimientos</td>
<td>-</td>
<td>-</td>
<td>9,5</td>
<td>512</td>
<td>18,5</td>
<td>11,2</td>
</tr>
<tr>
<td>Diferencia</td>
<td>-</td>
<td>-</td>
<td>0,37</td>
<td>63,4</td>
<td>28,4</td>
<td>0</td>
</tr>
</tbody>
</table>

Nota: Potencial de producción- 577,9 g

Experimento III.3 (Anexo IV)

Tabla 7. Balance alimentario de la Asociación para la época poco lluviosa.

<table>
<thead>
<tr>
<th>Aporte de los nutrientes</th>
<th>Consumo (kg de MV)</th>
<th>Consumo (kg de MS)</th>
<th>EM (Mcal)</th>
<th>PB (g)</th>
<th>Ca (g)</th>
<th>P (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pasto guinea likoni</td>
<td>17,79</td>
<td>5,5</td>
<td>11,35</td>
<td>791</td>
<td>32,9</td>
<td>13,2</td>
</tr>
<tr>
<td>Leucaena</td>
<td>4,86</td>
<td>1,5</td>
<td>3,43</td>
<td>310,1</td>
<td>34,6</td>
<td>3,85</td>
</tr>
<tr>
<td>Total</td>
<td>22,65</td>
<td>7,00</td>
<td>14,78</td>
<td>1101</td>
<td>67,5</td>
<td>17,05</td>
</tr>
<tr>
<td>Requerimientos</td>
<td>-</td>
<td>-</td>
<td>13,1</td>
<td>588</td>
<td>19,8</td>
<td>14,80</td>
</tr>
<tr>
<td>Diferencia</td>
<td>-</td>
<td>-</td>
<td>1,68</td>
<td>513</td>
<td>47,7</td>
<td>2,25</td>
</tr>
</tbody>
</table>

Nota: Potencial de producción- 270 g

Experimento III.4 (Anexo V)

Tabla 8. Balance alimentario de la Asociación para la época poco lluviosa.

<table>
<thead>
<tr>
<th>Aporte de los nutrientes</th>
<th>Consumo (kg de MV)</th>
<th>Consumo (kg de MS)</th>
<th>EM (Mcal)</th>
<th>PB (g)</th>
<th>Ca (g)</th>
<th>P (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pasto guinea likoni</td>
<td>18,29</td>
<td>5,71</td>
<td>11,84</td>
<td>554</td>
<td>34,3</td>
<td>13,6</td>
</tr>
<tr>
<td>Leucaena</td>
<td>3,21</td>
<td>1,00</td>
<td>2,32</td>
<td>207</td>
<td>23,1</td>
<td>1,8</td>
</tr>
<tr>
<td>Total</td>
<td>21,50</td>
<td>6,71</td>
<td>14,16</td>
<td>761</td>
<td>57,4</td>
<td>15,4</td>
</tr>
<tr>
<td>Requerimientos</td>
<td>-</td>
<td>-</td>
<td>14,0</td>
<td>614</td>
<td>21,2</td>
<td>15,3</td>
</tr>
<tr>
<td>Diferencia</td>
<td>-</td>
<td>-</td>
<td>0,16</td>
<td>147</td>
<td>36,2</td>
<td>0,1</td>
</tr>
</tbody>
</table>

Nota: Potencial de producción- 439 g